Katalysatoren bei der Arbeit zugeschaut – auf atomarer Ebene

Elementarste Prozesse im Rampenlicht: Donor- und Akzeptorbindungseigenschaften des Modellkatalysators [Fe(CO)5] in Lösung werden mithilfe von resonanter inelastischer Röntgenstreuung untersucht.

Elementarste Prozesse im Rampenlicht: Donor- und Akzeptorbindungseigenschaften des Modellkatalysators [Fe(CO)5] in Lösung werden mithilfe von resonanter inelastischer Röntgenstreuung untersucht. © HZB/Edlira Suljoti

Innovative Methodenkombination am HZB führt zu grundlegenden Erkenntnissen in der Katalyseforschung

Die Entwicklung von Materialien mit neuartigen katalytischen Eigenschaften hat gerade in der Energieforschung große Bedeutung. Besonders wichtig ist dabei das Verständnis dynamischer Vorgänge beim Katalyseprozess auf atomarer Ebene, wie beispielsweise die Bildung und das Aufbrechen chemischer Bindungen oder so genannte Ligandenaustauschreaktionen. Wissenschaftler des Helmholtz-Zentrum Berlin (HZB) haben jetzt gemeinsam mit Kooperationspartnern ein als RIXS bezeichnete spektroskopische Methode mit der so genannten ab initio-Theorie kombiniert, um diese Prozesse an einem für die Katalyseforschung bedeutenden metallischen Molekülkomplex – dem Eisencarbonylkomplex – detailliert zu beschreiben. Ihre Ergebnisse veröffentlicht das Team heute in dem renommierten Fachjournal „Angewandte Chemie International Edition“.

Eisencarbonylkomplexe werden bei einer großen Anzahl chemischer Reaktionen und industrieller Prozesse eingesetzt, wie beispielsweise in der lichtinduzierten Wasserreduktion oder der katalytischen Kohlenmonoxid (CO)-Entfernung aus Abgasen. Die Katalyse erfolgt durch den schnellen Aufbau und das anschließende Lösen chemischer Bindungen zwischen dem Metallzentrum und dem Carbonylliganden. „Für uns ist es essentiell, die Stärke von Orbital-Wechselwirkung in Carbonylkomplexen durch eine direkte Untersuchung der Metallzentren und des Liganden bestimmen zu können“, sagt Prof. Dr. Emad Flear Aziz, Gruppenleiter der HZB-Nachwuchsgruppe `Struktur und Dynamik funktionaler Materialien´. Bisher war diese Untersuchung in homogener Katalyse in Lösung nicht möglich. Die Entwicklung der neuen „LiXEdrom“ Versuchsstation für Messungen an einem Mikro-Flüssigkeitsstrahl in der HZB-Nachwuchsgruppe hat die RIXS-Experimente (Resonant Inelastic X-ray Scattering) an funktionalen Materialien unter in situ-Bedingungen ermöglicht.

Am Elektronenspeicherring BESSY II des HZB ist es Aziz Team gemeinsam mit Wissenschaftlern aus verschiedenen Universitäten nun gelungen, unter Bedingungen, bei denen auch in der Realität die Katalyse abläuft (in-situ), sowohl das Metall als auch die Liganden mittels der RIXS-Spektroskopie zu untersuchen. Sie stellten eine sehr starke Orbital-Wechselwirkung zwischen dem Metall und dessen Liganden fest, die zu einer Schwächung und Verlängerung der chemischen Bindung während der RIXS-Anregungen führte. Die experimentellen Ergebnisse wurden durch theoretische ab initio-Verfahren von der Universität Rostock unterstützt. „Mit dieser neuen Methodenkombination haben wir grundlegende Einsichten in die elektronische Struktur von Eisencarbonyl-Komplexen unter katalyserelevanten Bedingungen erhalten“, sagt Aziz: „Unser Ansatz kann zu einem besseren Verständnis von Reaktionsdynamiken und Metall-Liganden-Lösungsmittel-Wechselwirkungen auf sehr kurzen Zeitskalen beitragen. Das führt zu einer verbesserten Kontrolle von katalytischen Eigenschaften – und birgt großes Potential für die Herstellung neuer katalytisch aktiver Materialen.“

Die Arbeiten fanden in Kooperation mit Prof. Dr. M. Bauer (Fachbereich Chemie, TU Kaiserslautern), Prof. Dr. J.-E. Rubensson (Dept. of Physics and Astronomy, Uppsala University) und Prof. Dr. O. Kühn (Institut für Physik, Universität Rostock) statt.

Der Artikel (DOI: 10.1002/anie.201303310) wurde am 23. Juli im Magazin „Angewandte Chemie – International Edition“ veröffentlicht (http://onlinelibrary.wiley.com/doi/10.1002/anie.201303310/abstract).

HS

  • Link kopieren

Das könnte Sie auch interessieren

  • Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Science Highlight
    27.03.2025
    Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.
  • BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Science Highlight
    25.03.2025
    BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Eine blütenförmige Struktur aus einer Nickel-Eisen-Legierung, die nur wenige Mikrometer misst, kann Magnetfelder lokal verstärken. Der Effekt lässt sich durch die Geometrie und Anzahl der „Blütenblätter“ steuern. Das magnetische Metamaterial wurde von der Gruppe um Dr. Anna Palau am Institut de Ciencia de Materials de Barcelona (ICMAB) mit Partnern aus dem CHIST-ERA MetaMagIC-Projekts entwickelt und nun an BESSY II in Zusammenarbeit mit Dr. Sergio Valencia untersucht. Die Mikroblüten ermöglichen vielfältige Anwendungen: Sie können die Empfindlichkeit magnetischer Sensoren erhöhen, die Energie für die Erzeugung lokaler Magnetfelder reduzieren, und am PEEM-Messplatz an BESSY II die Messung von Proben unter deutlich höheren Magnetfeldern ermöglichen.
  • Innovative Batterie-Elektrode aus Zinn-Schaum
    Science Highlight
    24.02.2025
    Innovative Batterie-Elektrode aus Zinn-Schaum
    Metallbasierte Elektroden in Lithium-Ionen-Akkus versprechen deutlich höhere Kapazitäten als konventionelle Graphit-Elektroden. Leider degradieren sie aufgrund von mechanischen Beanspruchungen während der Lade- und Entladezyklen. Nun zeigt ein Team am HZB, dass ein hochporöser Schaum aus Zinn den mechanischen Stress während der Ladezyklen deutlich besser abfedern kann. Das macht Zinn-Schäume als potentielles Material für Lithium-Batterien interessant.