Highlight: Erstmalige Beobachtung von Undulatorstrahlung mit Bahndrehimpuls

Die Abbildung demonstriert die exzellente Übereinstimmung zwischen Messung (links) und Rechnung mit dem HZB-Code WAVE (rechts).

Die Abbildung demonstriert die exzellente Übereinstimmung zwischen Messung (links) und Rechnung mit dem HZB-Code WAVE (rechts). © J. Bahrdt/HZB

Am Speicherring BESSY II ist es HZB-Wissenschaftlern erstmalig gelungen, 99 eV-Photonen mit Bahndrehimpuls in den höheren Harmonischen eines helikalen Undulators nachzuweisen. Im Sichtbaren werden diese sogenannten singulären Strahlen oder auch OAM-Photonen (Orbital Angular Momentum carrying photons) seit einigen Jahren durch geeignete Phasenmanipulation aus Laserlicht erzeugt. Der nun am HZB gelungene Nachweis ihrer Existenz in der off-axis-Strahlung helikaler Undulatoren - die theoretisch bereits vor fünf Jahren vorhergesagt wurde - weitet den Energiebereich von OAM-Photonen erheblich aus, da helikale Undulatoren an Elektronenbeschleunigern zur Erzeugung von Photonen bis in den Röntgenbereich eingesetzt werden.

Unter normalen Betriebsbedingungen der Synchrotronstrahlungsquelle BESSY II ist die Elektronenstrahlemittanz  - das Phasenraumvolumen der Elektronenpakete - zu groß, um die singuläre Phasenstruktur von OAM-Photonen beobachten zu können. Die Emittanz skaliert jedoch quadratisch mit der Energie: Bei ca. 900 MeV (die Energie einer alten PTB-Optik am BESSY II) beträgt sie deshalb nur noch ein Viertel. Ein Team um Dr. Johannes Bahrdt hat deshalb an einem Messtag im Januar 2013 die Maschine mit gespeichertem Strahl heruntergefahren und die Energie der gespeicherten Elektronen von 1,72 GeV auf 917 MeV abgesenkt. „Bei dieser Prozedur mussten wir alle Speicherringmagnete synchron mitfahren, um die Elektronenverluste zu minimieren“, sagt Johannes Bahrdt, „denn ein Nachinjizieren bei 917 MeV war nicht möglich.“

Bei dem Experiment betrug der Strahlstrom nur noch 1mA bei 8 Stunden Lebensdauer. Der Nachweis der singulären Strahlen erfolgte über ein Interferenzexperiment am Undulator UE56-2. Das erste Modul des Doppelundulators (helikale Polarisation) produzierte die OAM-Photonen, während der zweite Undulator (lineare Polarisation) als Referenzquelle diente. Die räumliche Verteilung der beiden transversal überlagerten Photonenstrahlen wurde mit einem Pinhole vor dem ersten optischen Element abgetastet. Die longitudinale Überlagerung und damit die Interferenz der beiden zunächst räumlich getrennten Lichtpakte erfolgte erst hinter dem Monochromator. Für die direkte Detektion der singulären Phasenverteilung wäre ein komplizierter Wavefront Sensor notwendig gewesen. Das Interferenzexperiment hingegen erzeugt eine aufgrund der Phasenverteilung charakteristische Intensitätsverteilung, die sich mit einer einfachen Photodiode nachweisen lässt. Das Nachweispattern ist eine Spirale. Der Drehsinn der Spirale spiegelt die Helizität der 1. Harmonischen des helikalen Unulators wieder; die Orientierung wird bestimmt durch den Phasenvorschub zwischen den beiden Undulatoren.

Nur in gemeinsamer Anstrengung von Mitarbeitern aus G-IA (P. Kuske, P. Schmid), NP-ABS (R. Müller), aus G-ISRR (K. Holldack) und G-AUND (J. Bahrdt, M. Scheer) war dieses „proof of principle“-Experiment möglich, auch deswegen, weil es außergewöhnliche Maschinenbedingungen erforderte. Photonen mit Bahndrehimpuls werden in Lichtquellen der nächsten Generation, also Energy Recovery Linacs, Ultimate Storage Rings oder Freie Elektronen Lasern, unter ganz normalen Betriebsbedingungen zur Verfügung stehen. Der zusätzliche Freiheitsgrad wird die Entwicklung neuartiger spektroskopischer Experimente, die an jetzigen Quellen noch nicht möglich sind, anstoßen.

Hier gelangen Sie zur Veröffentlichung in Physical Review Letters (DOI: 10.1103/PhysRevLett.111.034801)

hs

  • Link kopieren

Das könnte Sie auch interessieren

  • Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung
    Nachricht
    13.12.2024
    Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung
    Auf dem diesjährigen Nutzertreffen zeichnete  der Freundeskreis des HZB die herausragende Promotionsarbeit von Dr. Dieter Skroblin von der Technischen Universität Berlin mit dem Ernst-Eckhard-Koch-Preis aus. Der Europäische Innovationspreis Synchrotronstrahlung ging an Dr. Manfred Faubel vom Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen und Dr. Bernd Winter vom Fritz-Haber-Institut in Berlin.
  • Modernisierung der Röntgenquelle BESSY II
    Nachricht
    11.12.2024
    Modernisierung der Röntgenquelle BESSY II
    Im Fokus des Nutzertreffens 2024: Das Helmholtz-Zentrum Berlin (HZB) stellt das Upgrade-Programm BESSY II+ vor.  Es ermöglicht, die Weltklasse-Forschung an BESSY II weiter auszubauen und neue Konzepte im Hinblick auf die Nachfolgequelle BESSY III zu erproben.  

  • Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Science Highlight
    05.12.2024
    Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Für die Produktion von Wasserstoff mit Elektrolyse werden Iridiumbasierte Katalysatoren benötigt. Nun zeigt ein Team am HZB und an der Lichtquelle ALBA, dass die neu entwickelten P2X-Katalysatoren, die mit nur einem Viertel des Iridiums auskommen, ebenso effizient und langzeitstabil sind wie die besten kommerziellen Katalysatoren. Messungen an BESSY II haben nun ans Licht gebracht, wie die besondere chemische Umgebung im P2X-Kat während der Elektrolyse die Wasserspaltung befördert.