Magnetoelektrische Kopplung beleuchtet

Rasterelektronenmikroskopische Aufnahme des Nanokomposits in der Aufsicht.

Rasterelektronenmikroskopische Aufnahme des Nanokomposits in der Aufsicht. © Uni Duisburg

Der Effekt führt zu neuen Möglichkeiten der digitalen Datenspeicherung

Es ist möglich, elektrische Eigenschaften von Festkörpern mithilfe von magnetischen Eigenschaften gezielt zu beeinflussen. Dies haben Wissenschaftler der Universität Duisburg-Essen in Kooperation mit HZB-Wissenschaftlern aus dem Institut Komplexe Magnetische Materialien nachgewiesen. Der Nachweis gelang mithilfe von Experimenten an der Synchrotronstrahlungsquelle BESSY II. Der Effekt – magnetoelektrische Kopplung genannt – kann genutzt werden, um neuartige Computerspeicher zu entwickeln, die sowohl schneller sind als heutige und außerdem weniger Strom verbrauchen. Die Wissenschaftler veröffentlichen ihre Ergebnisse in der aktuellen Ausgabe der Fachzeitschrift „Nature Communications“.

Dr. Carolin Schmitz-Antoniak aus dem Duisburger Team um Prof. Heiko Wende hat ein Material aus Bariumtitanat verwendet, in das winzige, nur wenige hundert Nanometer große Säulen aus Cobaltferrit eingebettet sind. Dabei zeigen die Nanosäulen magnetostriktive Eigenschaften. Das heißt, bei Anlegen eines Magnetfeldes verformen sie sich unter Erhaltung ihres Volumens. Die umgebende Matrix ist piezoelektrisch. Das heißt, sie baut eine elektrische Spannung auf, wenn sie unter mechanischem Druck steht.

Mit dieser Materialanordnung haben die Wissenschaftler die Nanosäulen durch Anlegen eines Magnetfeldes verformt und so mechanischen Druck auf die Matrix ausgeübt, so dass dort eine elektrische Spannung induziert wurde.

Dass dies gelang, zeigten die Untersuchungen an BESSY II. Sie wurden in Kooperation mit Dr. Detlef Schmitz vom Institut Komplexe Magnetische Materialien durchgeführt. In der Hochfeldkammer am Strahlrohr UE46-PGM1 wurde weiche Röntgenstrahlung verwendet und dabei auch die einzigartige Möglichkeit genutzt, die die Hochfeldkammer bietet: Man kann dort das angelegte Magnetfeld relativ zu der Polarisationsrichtung des verwendeten Röntgenlichts drehen. Unter Ausnutzung der Kombination des sogenannten Zirkulardichroismus und des Lineardichroismus bekamen die Wissenschaftler Informationen über den Magnetismus sowie über die elektrische Polarisation der beteiligten Atome.

Darüber hinaus wurden in Kooperation mit Dr. Esther Dudzik und Dr. Ralf Feyerherm vom selben HZB-Institut Untersuchungen mit harter Röntgenstrahlung am MAGS-Strahlrohr durchgeführt. Die dabei gewonnenen Informationen über die Kristallstruktur bestätigten die Deformation der Matrix durch das angelegte Magnetfeld.

Alle Informationen zusammen gaben dem Forscherteam schließlich ein Bild davon, wie die Steuerung der elektrische Polarisation mit Magnetfeldern funktioniert. Sie beruht auf winzigsten Verschiebungen der Atome in dem Komposit-Material: Legt man entlang der langen Säulenachse ein Magnetfeld an, so ziehen sich die Säulen in dieser Richtung zusammen. Ihr Umfang vergrößert sich dabei, und so drücken sie an allen Seiten auf die umgebende Matrix. Unter dem Druck baut diese eine elektrische Polarisation auf.

Verläuft das Magnetfeld hingegen senkrecht zu den Säulen, ziehen sich diese in Feldrichtung zusammen, während sie sich quer dazu ausdehnen. So wird die Matrix nur quer zum Magnetfeld gestaucht und bildet eine asymmetrische elektrische Polarisationsverteilung aus, die in diesem System zuvor noch niemand beobachtet hat.

Für die digitale Datenspeicherung wird das System dadurch interessant, dass die elektrische Polarisation auch noch erhalten bleibt, wenn das Magnetfeld wieder ausgeschaltet ist. Die Forscher haben deshalb bereits eine Strategie entwickelt, um einzelne Säulen durch Strompulse in Längs- und Querrichtung gezielt zu stauchen, um so Informationen bitweise einzuschreiben.

Zur Publikation: DOI: 10.1038/ncomms3051

Presseinfo der Uni Duisburg-Essen

IH

  • Link kopieren

Das könnte Sie auch interessieren

  • Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung
    Nachricht
    13.12.2024
    Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung
    Auf dem diesjährigen Nutzertreffen zeichnete  der Freundeskreis des HZB die herausragende Promotionsarbeit von Dr. Dieter Skroblin von der Technischen Universität Berlin mit dem Ernst-Eckhard-Koch-Preis aus. Der Europäische Innovationspreis Synchrotronstrahlung ging an Dr. Manfred Faubel vom Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen und Dr. Bernd Winter vom Fritz-Haber-Institut in Berlin.
  • Modernisierung der Röntgenquelle BESSY II
    Nachricht
    11.12.2024
    Modernisierung der Röntgenquelle BESSY II
    Im Fokus des Nutzertreffens 2024: Das Helmholtz-Zentrum Berlin (HZB) stellt das Upgrade-Programm BESSY II+ vor.  Es ermöglicht, die Weltklasse-Forschung an BESSY II weiter auszubauen und neue Konzepte im Hinblick auf die Nachfolgequelle BESSY III zu erproben.  

  • Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Science Highlight
    05.12.2024
    Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Für die Produktion von Wasserstoff mit Elektrolyse werden Iridiumbasierte Katalysatoren benötigt. Nun zeigt ein Team am HZB und an der Lichtquelle ALBA, dass die neu entwickelten P2X-Katalysatoren, die mit nur einem Viertel des Iridiums auskommen, ebenso effizient und langzeitstabil sind wie die besten kommerziellen Katalysatoren. Messungen an BESSY II haben nun ans Licht gebracht, wie die besondere chemische Umgebung im P2X-Kat während der Elektrolyse die Wasserspaltung befördert.