Physiker lassen erstmals magnetische Dipole auf der Nanoskala wechselwirken

Magnetinseln: Rasterelektronenmikroskopische Aufnahme von einem regelmäßig angeordneten quadratischen Gitter aus magnetischen Inseln. Die Inseln stellten die Forscher mit Elektronenstrahllithographie her. © modifiziert nach / modified from Physical Review Letters

Magnetinseln: Rasterelektronenmikroskopische Aufnahme von einem regelmäßig angeordneten quadratischen Gitter aus magnetischen Inseln. Die Inseln stellten die Forscher mit Elektronenstrahllithographie her. © modifiziert nach / modified from Physical Review Letters

Ergebnisse sind interessant für zukünftige Festplatten

Wie sich winzige Inseln aus magnetischem Material anordnen, wenn man sie in ein regelmäßiges Gitter sortiert, haben Physiker der Ruhr-Universität Bochum (RUB) durch Messungen an BESSY II herausgefunden. Anders als erwartet richteten sich die Nord- und Südpole der Magnetinseln nicht in einem Zickzack-Muster, sondern in Ketten aus. „Das Verständnis der treibenden Wechselwirkungen ist von hohem technischen Interesse für zukünftige Festplatten, die aus kleinen Magnetinseln bestehen werden“, sagt Prof. Dr. Hartmut Zabel von der RUB. Gemeinsam mit Dr. Akin Ünal,  Dr. Sergio Valencia und Dr. Florian Kronast vom Helmholtz-Zentrum Berlin berichten die Bochumer Forscher in der Zeitschrift „Physical Review Letters“ über ihre Ergebnisse.

Die vollständige Info lesen Sie in der Presseinfo der RUB

 

RUB

  • Link kopieren

Das könnte Sie auch interessieren

  • Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Science Highlight
    27.03.2025
    Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.
  • BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Science Highlight
    25.03.2025
    BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Eine blütenförmige Struktur aus einer Nickel-Eisen-Legierung, die nur wenige Mikrometer misst, kann Magnetfelder lokal verstärken. Der Effekt lässt sich durch die Geometrie und Anzahl der „Blütenblätter“ steuern. Das magnetische Metamaterial wurde von der Gruppe um Dr. Anna Palau am Institut de Ciencia de Materials de Barcelona (ICMAB) mit Partnern aus dem CHIST-ERA MetaMagIC-Projekts entwickelt und nun an BESSY II in Zusammenarbeit mit Dr. Sergio Valencia untersucht. Die Mikroblüten ermöglichen vielfältige Anwendungen: Sie können die Empfindlichkeit magnetischer Sensoren erhöhen, die Energie für die Erzeugung lokaler Magnetfelder reduzieren, und am PEEM-Messplatz an BESSY II die Messung von Proben unter deutlich höheren Magnetfeldern ermöglichen.
  • Innovative Batterie-Elektrode aus Zinn-Schaum
    Science Highlight
    24.02.2025
    Innovative Batterie-Elektrode aus Zinn-Schaum
    Metallbasierte Elektroden in Lithium-Ionen-Akkus versprechen deutlich höhere Kapazitäten als konventionelle Graphit-Elektroden. Leider degradieren sie aufgrund von mechanischen Beanspruchungen während der Lade- und Entladezyklen. Nun zeigt ein Team am HZB, dass ein hochporöser Schaum aus Zinn den mechanischen Stress während der Ladezyklen deutlich besser abfedern kann. Das macht Zinn-Schäume als potentielles Material für Lithium-Batterien interessant.