Proteinstrukturen besser erforschen

Uwe Müller und Thomas Frederking (v.li.) durchtrennen das Band. Der neue Detektor ist nun einsatzbereit.

Uwe Müller und Thomas Frederking (v.li.) durchtrennen das Band. Der neue Detektor ist nun einsatzbereit.

Oliver Daumke vom Max-Delbrück-Zentrum referierte darüber, warum die Erforschung von Proteinen eine wichtige Aufgabe ist.

Oliver Daumke vom Max-Delbrück-Zentrum referierte darüber, warum die Erforschung von Proteinen eine wichtige Aufgabe ist.

Uwe Müller (HZB), Gerd Illing (4ii Consulting) und Wolfram Saenger (FU-Berlin) im Gespräch.

Uwe Müller (HZB), Gerd Illing (4ii Consulting) und Wolfram Saenger (FU-Berlin) im Gespräch.

Erfolgreich installiert: Michael Hellmig (li.), Ingenieur aus dem HZB, hat den Detektor in die MX-Beamline Bl14.1 integriert. Über die neuen experimentellen Möglichkeiten freut sich auch Manfred Weiss (re.) aus der MX-Arbeitsgruppe.

Erfolgreich installiert: Michael Hellmig (li.), Ingenieur aus dem HZB, hat den Detektor in die MX-Beamline Bl14.1 integriert. Über die neuen experimentellen Möglichkeiten freut sich auch Manfred Weiss (re.) aus der MX-Arbeitsgruppe.

Feierlich eingeweiht: Der neue Pilatus-Detektor für die Kristallographie ist nun einsatzbereit

Am Montag, dem 25. Februar wurde der neue Pilatus 6M-Detektor am HZB eingeweiht, der an der MX-Beamline BL14.1 für noch bessere Ergebnisse sorgen wird. Thomas Frederking, kaufmännischer Geschäftsführer am HZB, und Dr. Uwe Müller, Leiter der HZB-Arbeitsgruppe Kristallographie“, zerschnitten gemeinsam das rote Band und übergaben damit den neuen Detektor in den Dienst der Wissenschaft. Entwickelt und gefertigt wurde das neue Gerät von der Schweizer Firma Dectris. Das HZB investierte 1, 2 Millionen Euro in dieses Projekt.

„Wir freuen uns, dass der neue Detektor jetzt betriebsbereit ist. Für unsere Nutzer ist es ein Riesenfortschritt. Aufgrund seiner Größe, seiner Rauschfreiheit und seiner Schnelligkeit ist der Detektor das Beste, was es momentan im Bereich Detektoren für Röntgenkristallographie auf dem Markt gibt. Wir sind auf die ersten wissenschaftlichen Ergebnisse gespannt“, sagt Uwe Müller auf der Veranstaltung.

Zur Eröffnungsfeier kamen hochrangige Gäste aus der Wissenschaft, die die Bedeutung der Proteinkristallografie für die Forschung in der Region unterstrich. Prof. Dr. Walter Rosenthal, wissenschaftlicher Vorstand des Max-Delbrück-Zentrums (MDC) in Berlin-Buch, nahm an der Einweihungszeremonie ebenso teil wie langjährige Kooperationspartner. Prof. Dr. Udo Heinemann (MDC) und Prof. Dr. Wolfram Saenger von der Freien Universität haben wesentlich dazu beigetragen, die Beamlines für die Untersuchung von Proteinen an BESSY II aufzubauen und die Methode am Elektronenspeicherring zu etablieren.

Gastredner Dr. Oliver Daumke vom MDC in Berlin veranschaulichte, welche Bedeutung die Untersuchung von Proteinstrukturen für die Gesellschaft hat. Durch die exakte Erkennung der Struktur und des Wirkungsmechanismus von speziellen Proteinen unseres Immunsystems erhoffe man sich beispielweise, Grippeerkrankungen schneller eindämmen zu können.

Etwa 20 Prozent aller HZB-Nutzer im Bereich Photonen forschen an den MX-Beamlines. Ein aktuelles Beispiel aus der Forschung ist, wie Proteine das Sehen steuern können. Die Untersuchungen wurden an BESSY II durchgeführt. Hier erfahren Sie mehr darüber.

SZ

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Science Highlight
    04.11.2024
    BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.
  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.