Organische Elektronik: Wie der Kontakt zwischen Kohlenstoffverbindungen und Metall gelingt

Über ihre „Sauerstoff-Ausleger“ nehmen die untersuchten organischen Verbindungen Kontakt zu den Atomen der Metalloberfläche auf. Dadurch verändern sich ihre elektronischen Eigenschaften.
</br>

Über ihre „Sauerstoff-Ausleger“ nehmen die untersuchten organischen Verbindungen Kontakt zu den Atomen der Metalloberfläche auf. Dadurch verändern sich ihre elektronischen Eigenschaften.
© Georg Heimel/HU Berlin

„Organische Elektronik“ steckt schon heute im Display von Smart-Phones und verspricht auch in Zukunft interessante Produkte, zum Beispiel biegsame Leuchtfolien, die Glühbirnen ersetzen sollen, oder Solarzellen, die Sonnenlicht in Strom umwandeln. Ein Problem besteht dabei stets darin, die aktive organische Schicht gut mit Metallkontakten zu verbinden. Auch für diese Aufgabe werden oft organische Moleküle eingesetzt. Allerdings war es bisher nicht möglich, genau vorherzusagen, welche Moleküle diese Aufgabe auch erfüllen. Sie mussten daher im Wesentlichen durch Ausprobieren identifiziert werden. Nun ein hat internationales Team von Wissenschaftlern um Dr. Georg Heimel und Prof. Dr. Norbert Koch vom HZB und der Humboldt-Universität zu Berlin herausgefunden, was diese Moleküle miteinander gemeinsam haben. Ihre Ergebnisse könnten es ermöglichen, die Kontaktschichten zwischen Metallelektroden und aktivem Material in organischen Bauelementen gezielter zu verbessern.

„Wir arbeiten seit mehreren Jahren an dieser Fragestellung und konnten nun mit einer Kombination unterschiedlicher Messmethoden und theoretischer Berechnungen ein schlüssiges Bild erhalten“ sagt Georg Heimel. Dabei haben die Forscher systematisch Moleküle untersucht, deren Rückgrat aus einer Reihe von aromatischen Kohlenstoffringen gebildet wird.  Die Kandidaten unterschieden sich nur in einem Detail: aus dem Rückgrat ragten unterschiedlich viele Sauerstoffatome. Diese so modifizierten Moleküle brachten sie auf die typischen Kontaktmetalle Gold, Silber und Kupfer auf.

Mit Photoelektronen-Spektroskopie (UPS und XPS) an der Synchrotronstrahlungsquelle BESSY II des HZB konnten sie die chemischen Bindungen zwischen Metalloberfläche und organischen Molekülen ermitteln sowie die Energieniveaus von Leitungselektronen messen. Den exakten Abstand der Moleküle zur Metalloberfläche bestimmten Kollegen von der Universität Tübingen mit Hilfe von X-Ray-Standing-Wave-Messungen, die sie an der Synchrotronstrahlungsquelle ESRF in Grenoble durchführten.

Dabei zeigte sich, dass die untersuchten Moleküle bei nahem Kontakt der „Sauerstoff-Ausleger“ mit einigen der Metalloberflächen ihre innere Struktur so veränderten, dass sie ihre halbleitenden Eigenschaften verloren und die metallischen Eigenschaften der Oberfläche annahmen. Trotz vergleichbarer Voraussetzungen zeigte das „nackte“ Rückgratmolekül diesen Effekt nicht. Aus der Beobachtung welche der untersuchten Moleküle sich auf welchem Metall so drastisch veränderten, konnten die Forscher nun allgemeine Richtlinien ableiten. „Wir haben jetzt eine recht genaue Vorstellung davon, wie Moleküle aussehen sollten und welche Eigenschaften sie mitbringen müssen, damit sie gut zwischen einem aktiven organischen Material und einem Metall vermitteln, also gewissermaßen einen Soft Metallic Contact formen“, meint Heimel.

An der Publikation sind auch Experten weiterer Universitäten in Deutschland sowie aus Forschungseinrichtungen in Suzhou (China), Iwate und Chiba (Japan) sowie der ESRF (Frankreich) maßgeblich beteiligt.

Online-Veröffentlichung am 17. Februar 2013 (19 Uhr MEZ) auf Nature Chemistry – DOI 10.1038/NCHEM.1572.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II haben nun ein Team von Wissenschaftlern mehrerer chinesischer Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Science Highlight
    04.11.2024
    BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.
  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.