Schnelle Entmagnetisierung durch Spintransport

Dass ein ultrakurzer Laserpuls eine ferromagnetische Schicht im Nu entmagnetisieren kann, ist seit etwa 1996 bekannt. Doch wie diese Entmagnetisierung funktioniert, ist noch nicht verstanden. Nun haben die Physikerin Dr. Andrea Eschenlohr und ihre Kollegen vom Helmholtz-Zentrum Berlin und der Universität Uppsala in Schweden gezeigt, dass es offenbar nicht der Lichtpuls selbst ist, der die Entmagnetisierung bewirkt.

Sie bestrahlten dafür zwei unterschiedliche Schichtsysteme mit extrem kurzen Laserpulsen von nur hundert Femtosekunden (10–15 s). Während eine Probe im Wesentlichen aus einer dünnen ferromagnetischen Nickelschicht bestand, war in der anderen Probe diese Nickelschicht von einer unmagnetischen Goldschicht bedeckt. Obwohl sie nur 30 Nanometer (10-9m) dick war, schluckte die Goldschicht den Großteil des Laserlichts, in der Nickelschicht kam kaum noch Licht an. Dennoch nahm die Magnetisierung der Nickelschicht kurz nach dem Eintreffen des Laserpulses in beiden Proben rasch ab, bei der goldbeschichteten Probe allerdings um Sekundenbruchteile später. Dies konnten die Forscher durch Messungen mit zirkular polarisierten Femtosekunden-Röntgenpulsen beobachten, die sie am Femtoslicing-Strahlrohr am Berliner Elektronenspeicherring BESSY II durchführten, den das HZB betreibt.

„Wir konnten damit experimentell zeigen, dass dabei die ultraschnelle Entmagnetisierung nicht durch das Licht selbst bewirkt wird, sondern durch heiße Elektronen, die der Laserpuls erzeugt“, erklärt Andrea Eschenlohr. Die so angeregten Elektronen können sich über kurze Distanzen, also durch die hauchdünne Goldschicht, extrem rasch bewegen. Sie transportieren damit ihr magnetisches Moment (den „Spin“) auch in die ferromagnetische Nickelschicht, so dass dort die vorherrschende magnetische Ordnung zusammenbricht. „Eigentlich wollten wir sehen, wie wir die Spins mit dem Laserpuls beeinflussen können“, erklärt der Leiter des Experiments Dr. Christian Stamm. „Dass wir aber direkt beobachten konnten, wie diese Spins wandern, war eine Überraschung.“

Laserpulse sind damit eine Möglichkeit, gezielt „Spinströme“ zu erzeugen, bei denen Spin an Stelle von elektrischer Ladung übertragen wird. Diese Beobachtung ist für das Forschungsgebiet der Spintronik interessant. Dabei entwerfen Forscher neue Bauelemente aus magnetischen Schichtsystemen, die mit Spins anstatt mit Elektronen „rechnen“ und dadurch Informationen extrem schnell und energiesparend verarbeiten und speichern können.

Dr. Andrea Eschenlohr war bis Ende 2012 am HZB beschäftigt, wo sie die hier vorgestellten Ergebnisse im Rahmen ihrer Doktorarbeit erzielte. Sie ist seit Januar als wissenschaftliche Mitarbeiterin an der Universität Duisburg-Essen tätig.

Die Arbeit “Ultrafast spin transport as key to femtosecond demagnetization” wurde am 27.1.2012 in Nature Materials veröffentlicht.
http://dx.doi.org/10.1038/NMAT3546

Dr. Andrea Eschenlohr
Universität Duisburg-Essen
Tel.: +49 (0)203 379-4531
andrea.eschenlohr@uni-due.de

Die Dissertation von Andrea Eschenlohr ist nun online im Open Access abrufbar.

((doi: http://dx.doi.org/10.5442/d0033))

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Science Highlight
    04.11.2024
    BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.
  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.