Virtuelles Institut „Mikrostrukturkontrolle für Dünnschichtsolarzellen“ offiziell gestartet

Der Blick ins Detail (hier in eine CIS-Dünnschicht-<br />solarzelle) hilft Forschern, die Zusammenhänge <br />innerhalb einer Solarzelle besser zu verstehen. <br />Das ist Voraussetzung für Entwicklung von <br />besseren, leistungsfähigeren Solarzellen der <br />nächsten Generation.

Der Blick ins Detail (hier in eine CIS-Dünnschicht-
solarzelle) hilft Forschern, die Zusammenhänge
innerhalb einer Solarzelle besser zu verstehen.
Das ist Voraussetzung für Entwicklung von
besseren, leistungsfähigeren Solarzellen der
nächsten Generation.

Kürzlich ist das Virtuelle Institut „Mikrostrukturkontrolle für Dünnschichtsolarzellen“ (MiCoTFSC) feierlich unter Beteiligung aller Partner an den Start gegangen. Das Helmholtz-Zentrum Berlin koordiniert diese Forschungskooperation, die mit Mitteln aus dem Impuls- und Vernetzungsfonds der Helmholtz-Gemeinschaft finanziert wird. Die Sprecherin des Virtuellen Instituts, Prof. Dr. Susan Schorr (HZB), hob während des Kick-off-Meetings die Zusammensetzung des Virtuellen Instituts mit hervorragenden Forschungsgruppen hervor, die verschiedenen Kompetenzen beim Solarzellenwachstum, mikrostruktureller und optoelektronischer Charakterisierung sowie Material- und Wachstumsmodellierung mitbringen.

Dünnschichtsolarzellen wurden in der Vergangenheit häufig durch systematisches Ausprobieren verbessert. Die Projektpartner wollen im Virtuellen Institut nun ein detailliertes Verständnis der Beziehungen zwischen Wachstumsprozessen, strukturellen Defekten, Eigenspannung und elektrischen Eigenschaften von Dünnschichtsolarzellen gewinnen. Durch die Kombination verschiedener Experiment- und Simulationstechniken wollen sie die entscheidenden mikrostrukturellen Zusammenhänge besser verstehen lernen. Dieses Wissen soll die Grundlage schaffen, um zukünftig noch effizientere Dünnschichtsolarzellen zu designen.

„Mit dem vereinten Expertenwissen können wir im Virtuellen Institut die Entwicklung von Mikrostruktur in Solarzellendünnschichten und deren Einflüsse auf  Bauelementfunktionen noch systematischer untersuchen“, erklärte Susan Schorr. Dr. Daniel Abou-Ras, Koordinator des Virtuellen Instituts, fasste während des Kick-Off-Meetings den Status Quo bei der Erforschung der Struktur-Eigenschaft-Beziehungen in Dünnschichtsolarzellen zusammen. Im Anschluss stellten alle Partner ihre Beiträge vor, die sie im Rahmen des Virtuellen Instituts einbringen.

Im Virtuellen Institut werden auch sechs Doktoranden und ein Post-Doktorand forschen. Die Aus- und Weiterbildung der Nachwuchskräfte spielt dabei eine wichtige Rolle.In einer Einführungswoche sollen die Nachwuchsforscher zunächst einen Überblick über alle Solarzellenmaterialien, Charakterisierungstechniken sowie Simulationsmethoden bekommen. In verschiedenen Doktorandenklausuren können die jungen Wissenschaftler und Wissenschaftlerinnen eigene Ideen für das Projekt entwickeln.

Daten und Fakten in Kürze

Gefördert von der Helmholtz Gemeinschaft.

Förderperiode: Das Helmholtz Virtuelle Institut hat eine Laufzeit von mindestens 3 und maximal 5 Jahren.

Leitendes Zentrum: Helmholtz-Zentrum Berlin für Materialien und Energie

Deutsche Hochschulpartner: FU Berlin, TU Berlin, MATHEON (DFG Research Center Mathematics for Key Technologies), TU Darmstadt

Andere deutsche Partner: Max-Planck Institut für Eisenforschung, Max-Planck-Institut für Intelligente Systeme

Ausländische Partner: University of Oxford (UK), ETH Zürich (Schweiz), SuperSTEM (EPSRC National Facility for Aberration Corrected STEM, UK)

Start der Virtuellen Instituts: 26. November 2012

Abou-Ras / SZ

  • Link kopieren

Das könnte Sie auch interessieren

  • Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Science Highlight
    28.03.2025
    Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Im Jahr 2023 erzeugten Photovoltaikanlagen weltweit mehr als 5% der elektrischen Energie und die installierte Leistung verdoppelt sich alle zwei bis drei Jahre. Optische Technologien können die Effizienz von Solarmodulen weiter steigern und neue Einsatzbereiche erschließen, etwa in Form von ästhetisch ansprechenden, farbigen Solarmodulen für Fassaden. Nun geben 27 Fachleute einen umfassenden Überblick über den Stand der Forschung und eine Einschätzung, welche Innovationen besonders zielführend sind. Der Bericht, der auch für Entscheidungsträger*innen in der Forschungsförderung interessant ist, wurde von Prof. Christiane Becker und Dr. Klaus Jäger aus dem HZB koordiniert.
  • Samira Aden ist Mitglied der ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Arbeitsgruppe.
    Nachricht
    26.03.2025
    Samira Aden ist Mitglied der ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Arbeitsgruppe.
    Samira Jama Aden, Architektin in der Beratungstelle für bauwerkintegrierte Photovoltaik (BAIP), ist der Arbeitsgruppe “Environmental, Social and Governance (ESG)” der ETIP PV - The European Technology & Innovation Platform for Photovoltaics beigetreten.
  • Perowskit-Solarzellen: Neue BMBF-Nachwuchsgruppe am HZB
    Nachricht
    14.03.2025
    Perowskit-Solarzellen: Neue BMBF-Nachwuchsgruppe am HZB
    Im Projekt COMET-PV will Dr. Artem Musiienko die Entwicklung von Perowskit-Solarzellen deutlich beschleunigen. Dabei setzt er auf Robotik und KI, um die vielfältigen Variationen in der Materialzusammensetzung von Zinnbasierten Perowskiten zu analysieren. Der Physiker wird am HZB eine Nachwuchsgruppe (Young Investigator Group) aufbauen. Darüber hinaus wird er an der Fakultät Physik der Humboldt-Universität zu Berlin auch Lehrverpflichtungen übernehmen.