Röntgenlaser FLASH deckt schnellen Entmagnetisierungsprozess auf
Ein internationales Forscherteam hat am Freie-Elektronen-Laser FLASH am Helmholtz-Forschungszentrum DESY einen überraschenden Effekt entdeckt, der in ferromagnetischen Materialien zu einer schnelleren Entmagnetisierung führen kann. Dieser Effekt könnte ein Schlüssel zur weiteren Miniaturisierung und Beschleunigung von magnetischen Speichern sein. Die Wissenschaftler um Prof. Dr. Stefan Eisebitt vom Helmholtz-Zentrum Berlin (HZB) und der TU Berlin veröffentlichten ihre Ergebnisse in der aktuellen Ausgabe des Magazins „Nature Communications“ (DOI 10.1038/ncomms2108).
„Dass sich durch Lichtpulse lokal die Magnetisierung eines Materials ändern lässt, ist schon lange bekannt, aber nun haben wir den Prozess erstmals sehr viel genauer beobachtet und dabei noch einen neuen Mechanismus entdeckt “, erklärt Stefan Eisebitt. Denn die meisten ferromagnetischen Materialien bestehen aus vielen einzelnen, magnetisch unterschiedlich ausgerichteten Domänen. „Beim Beschuss mit Laserlicht flitzen freigesetzte Elektronen durch das Material und gelangen aus einer Domäne in eine andersherum magnetisierte Domäne. Dabei tragen diese Elektronen einen Teil der Magnetisierung durch die Probe und können so die lokale Magnetisierung zerstören“, erläutert Nachwuchswissenschaftler und Erstautor der Veröffentlichung Bastian Pfau von der TU Berlin.
Die Experimente führten die Forscher aus TU Berlin, HZB und DESY sowie ihre Kollegen aus den Universitäten Hamburg und Paris sowie sechs weiteren Forschungseinrichtungen, darunter auch dem Stanford Linear Accelerator Center SLAC, USA, an DESYs Freie-Elektronen-Laser FLASH in Hamburg durch. Zuvor hatten sie die Domänenmuster an den Synchrotronanlagen BESSY II am HZB und SOLEIL bei Paris charakterisiert. Sie untersuchten Proben aus einem Kobalt-Platin-Schichtsystem, dessen nanometerfeine magnetische Domänen Labyrinth-artige Strukturen bilden. „Unsere Ergebnisse zeigen auch, dass die Lage und Dichte magnetischer Domänengrenzen das Demagnetisierungsverhalten beeinflussen kann“, erklärt Stefan Eisebitt. „Das liefert einen neuen Ansatz, um schnellere und kleinere magnetische Datenspeicher zu entwickeln, nämlich durch den gezielten Aufbau magnetischer Nanostrukturen.“