Sonnenlicht zu Wasserstoff

Wasserstoff-Entwicklung an einer graphitischen Kohlenstoff-Nitrid/p-Typ-<br />Chalkopyrit Dünnschicht-Photokathode:<br />Graphitische Kohlenstoffnitrid-Filme,die auf p-Typ-CuGaSe2-Dünnschichten<br />aufgelagert sind, können erfolgreich als neue photo-elektrochemische<br />Bestandteile von Photokathoden zur licht-induzierten Wasserstoffproduktion<br />genutzt werden.

Wasserstoff-Entwicklung an einer graphitischen Kohlenstoff-Nitrid/p-Typ-
Chalkopyrit Dünnschicht-Photokathode:
Graphitische Kohlenstoffnitrid-Filme,die auf p-Typ-CuGaSe2-Dünnschichten
aufgelagert sind, können erfolgreich als neue photo-elektrochemische
Bestandteile von Photokathoden zur licht-induzierten Wasserstoffproduktion
genutzt werden.

Wissenschaftler des Helmholtz-Zentrum Berlin testen erfolgreich neues Hybridmaterial für die photoelektrochemische Wasserstoffentwicklung

Sonnenlicht direkt in Wasserstoff umzuwandeln, wäre die ideale Lösung, um Sonnenenergie speicherbar zu machen. Dafür müssen neuartige Halbleitermaterialien entwickelt werden, die in Wasser eingetaucht Licht auffangen und es an Ort und Stelle zur Produktion von Wasserstoff nutzen - eine große technologische Herausforderung. Wissenschaftler des Helmholtz-Zentrum Berlin (HZB) haben gemeinsam mit Kooperationspartnern im BMBF-Verbundprojekt „Light2Hydrogen“ ein neuartiges Hybridmaterial hergestellt und analysiert, das dazu in der Lage ist: Die photoelektrochemische Reaktion läuft an einer speziellen Kohlenstoff-Verbindung als Photokatalysator ab, dem so genanntem polymeren Kohlenstoffnitrid.

Dieses wird in dünnen Schichten auf Halbleitersubstrate wie Chalkopyrit oder Silizium aufgebracht. Damit konnten die Forscher zum ersten Mal nachweisen, dass Kohlenstoffnitridfilme auf Chalkopyriten bzw. Silizium erfolgreich als Bestandteil von Photokathoden für die lichtinduzierte Wasserstoff-Entwicklung eingesetzt werden können (Chemistry & Sustainability Energy & Materials 5 (2012) 1227-32; DOI: 10.1002/cssc.201100691; Impact Factor: 6.827).

Sonnenenergie kann genutzt werden, um Wasser in Sauerstoff und Wasserstoff zu spalten. Der entstehende Wasserstoff ist ein Brennstoff, der sich verdichten oder chemisch weiter umwandeln und anschließend speichern lässt. Für den Herstellungsprozess - die photochemische Elektrolyse oder photoelektrochemische Wasserstoffentwicklung - gibt es bisher keine ausgereiften Materialsysteme. Notwendig sind Halbleiter, die im Wasser eingetaucht Licht absorbieren und nutzen, um Ladungsträger für die Photoelektrolyse an die Materialoberfläche zu bringen. Die idealen Halbleiter wären natürlich Silizium oder Chalkopyrit, so wie es in der Photovoltaik benutzt wird. Taucht man aber Silizium- bzw. Chalkopyrit-Halbleiter in Wasser, korrodieren sie sofort und werden unwirksam. Forscher suchen deshalb nach anderen Halbleitern - wie dem polymeren Kohlenstoffnitrid.

Bisher konnte diese Substanz nur in Pulverform untersucht werden. Im Rahmen des Light2Hydrogen-Projekts (www.light2hydrogen.de) haben Wissenschaftler das polymere  Kohlenstoffnitrid erfolgreich auf Chalkopyrit und Silizium aufgebracht. Die entsprechenden Verfahren sind am HZB gut etabliert und werden bei der Erforschung von Dünnschichtsolarzellen eingesetzt. „Das neue Verbundmaterial haben wir dann in unter sauren Bedingungen, also bei niedrigem pH-Wert  untersucht“, sagt PD Dr. Thomas Schedel-Niedrig, der das Projekt am HZB leitet. Es habe sich als stabil erwiesen und bei Einfall von Licht sei viel Wasserstoff entstanden. „Durch diese Hybridverbindung zu Chalkopyrit bzw. Silizium haben wir ein zusätzliches elektrisches Feld eingebaut, das die Performance verbessert“, so Schedel-Niedrig weiter.

Diese Beobachtung reicht den Wissenschaftlern jedoch bei weitem nicht aus. Sie wollen vielmehr verstehen, wie das Kohlenstoffnitrid im Detail auf dem Chalkopyrit oder Silizium aufgelagert ist, die Kohlenstoffnitrid Schichtdicke verringern sowie Metallatome einbauen, und mit diesem Wissen die photoelektrochemische Performance optimieren: „Die erforderlichen Untersuchungen haben wir auch an einem Experimentierplatz des Fritz-Haber-Instituts am Elektronenspeicherring BESSY II unter Wasserdampf gemacht“, sagt Schedel-Niedrig: „Dort können wir Oberflächenkomponenten in-situ spektroskopisch sehr genau analysieren, um sie anschließend gezielt zu modifizieren.“ Das sei nötig, damit die Wasserstoffausbeute steige und die Reaktion nicht nur in Schwefelsäure sondern später auch in Wasser ablaufe. „Wenn wir mit unserer Grundlagenforschung einen Beitrag zur Entwicklung neuer Energieversorgungskonzepte leisten wollen, müssen wir die Prozesse so weiter entwickeln, dass sie später auch industriell anwendbar sind“, erklärt der HZB-Wissenschaftler.

Die Aussichten dafür sind gut: Das HZB ist gerade als Projektpartner in das DFG-Schwerpunktprogramm „Regenerativ erzeugte Brennstoffe durch lichtgetriebene Wasserspaltung: Aufklärung der Elementarprozesse und Umsetzungsperspektiven auf technologische Konzepte (SPP 1613)“ aufgenommen worden. Gemeinsam mit der TU Berlin und dem Fritz-Haber-Institut der Max-Planck-Gesellschaft werden die HZB-Wissenschaftler daran arbeiten, Sonnenlicht effizient für die Wasserstoffproduktion an Chalkopyriten und Chalkopyrit-Solarzellen bzw. für die Sauerstoffproduktion an Tantaloxinitriden nutzbar zu machen.

HS

  • Link kopieren

Das könnte Sie auch interessieren

  • Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
    Science Highlight
    21.12.2024
    Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
    An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser eignet sich ein Molekül als molekularer Nanomagnet. Solche Nanomagnete besitzen eine Vielzahl von potenziellen Anwendungen, z. B. als energieeffiziente Datenspeicher. An der Studie waren Forschende aus dem Max-Planck-Institut für Kohlenforschung (MPI KOFO), dem Joint Lab EPR4Energy des Max-Planck-Instituts für Chemische Energiekonversion (MPI CEC) und dem Helmholtz-Zentrums Berlin beteiligt.
  • Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung
    Nachricht
    13.12.2024
    Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung
    Auf dem diesjährigen Nutzertreffen zeichnete  der Freundeskreis des HZB die herausragende Promotionsarbeit von Dr. Dieter Skroblin von der Technischen Universität Berlin mit dem Ernst-Eckhard-Koch-Preis aus. Der Europäische Innovationspreis Synchrotronstrahlung ging an Dr. Manfred Faubel vom Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen und Dr. Bernd Winter vom Fritz-Haber-Institut in Berlin.
  • Modernisierung der Röntgenquelle BESSY II
    Nachricht
    11.12.2024
    Modernisierung der Röntgenquelle BESSY II
    Im Fokus des Nutzertreffens 2024: Das Helmholtz-Zentrum Berlin (HZB) stellt das Upgrade-Programm BESSY II+ vor.  Es ermöglicht, die Weltklasse-Forschung an BESSY II weiter auszubauen und neue Konzepte im Hinblick auf die Nachfolgequelle BESSY III zu erproben.