Preis und Preis gesellt sich gern: Simon Kirner und Christiane Stephan mit Posterpreisen auf der E-MRS ausgezeichnet

Die Postersessions waren ein wichtiger Bestandteil <br />der Symposien auf dem E-MRS Spring Meeting 2012<br />

Die Postersessions waren ein wichtiger Bestandteil
der Symposien auf dem E-MRS Spring Meeting 2012
© EMRS

Auf der renommierten Frühjahrskonferenz der Europäischen Materialforschungsgesellschaft (E-MRS) wurden im Mai gleich zwei HZB-Nachwuchswissenschaftler für ihre Posterbeiträge ausgezeichnet. Beide Forscher beschäftigten sich mit verschiedenen Aspekten von Dünnschichtsolarzellen. Simon Kirner, Doktorand am PVcomB, zeigte in seinem Poster, wie man Tandemsolarzellen aus amorphen und kristallen Silizium mithilfe einer Zwischenschicht aus Silizium-Oxid optimieren kann. Dr. Christiane Stephan aus der Abteilung Kristallographie untersuchte Defekte in der Kristallstruktur von Cu(In,Ga)Se2, dem Absorbermaterial in hocheffizienten Chalkopyrit-Dünnschichtsolarzellen. An dem E-MRS Spring Meeting in Straßburg, die mit großer Industriebeteiligung organisiert wurde, nahmen etwa 2500 Teilnehmer teil; für die wissenschaftlichen Diskussionen gab es 25 Symposien zu verschiedenen Themenbereichen.

Tandemsolarzellen aus Dünnschicht-Silizium optimieren
Tandemzellen bestehen aus zwei Solarzellen, die miteinander verbunden sind: aus der Top-Zelle und der Bottom-Zelle. Diese Zellen bestehen aus unterschiedlichen Materialien. Der bestechende Vorteil von diesen „gestapelten“ Solarzellen: jede Solarzelle kann verschiedene Lichtbereiche einfangen, so dass die Tandemzelle insgesamt mehr Licht in Strom umwandeln kann. Simon Kirner untersucht Tandemsolarzellen aus amorphem Silizium (Top-Zelle) und mikrokristallinem Silizium (Bottom-Zelle) Ein limitierender Faktor dieser Solarzellen ist, dass die Topzelle zu wenig Strom einfangen kann. Die Schichtdicke kann allerdings nicht beliebig erhöht werden, da dies eine erhöhte Alterung der Topzelle verursachen würde. Simon Kirner hat deshalb den Einsatz einer reflektierenden Zwischenschicht aus mikrokristallinem Siliziumoxid (Intermediate Reflector) untersucht, um diese Solarzellen zu optimieren. Die aus dem Einbau des Intermediate Reflector resultierenden schlechteren elektrischen Eigenschaften der Tandemzelle konnten durch den Einsatz einer Rekombinationsschicht aus mikrokristallinem Silizium vollständig kompensiert werden. Doch dieser Effekt ist bisher nur teilweise verstanden. Simon Kirner will nun herausfinden, woran das liegt.
 
Mit Neutronen und Röntgenlicht Defekte in Chalkopyrit-Dünnschichtsolarzellen entdecken
Christiane Stephan hat einen anderen Arbeitsschwerpunkt: Sie beschäftigt sich mit hocheffizienten Chalkopyrit-Dünnschichtsolarzellen mit CuInSe2, CuGaSe2 oder Cu(In,Ga)Se2 als Absorberschicht. Grundsätzlich zeichnen sich diese Verbindungshalbleiter durch eine nicht-stöchiometrische Zusammensetzung auf, das heißt sie sind Kupfer-arm und Indium-reich. Aufgrund dieser Stöchiometrieabweichungen entstehen in der Kristallstruktur Defekte (sog. Punktdefekte), die dann in der fertigen Solarzelle Ladungsträger einfangen und somit den Stromfluss verringern können. Andererseits bewirkt diese Stöchiometrieabweichung, dass die Kristallstruktur zunächst über einen gewissen Zusammensetzungsbereich stabil ist, bevor sich eine andere Phase (Verbindung) bildet. Um zu beobachten, wie sich die Kristallstruktur des Absorbermaterials in den Dünnschicht-Solarzellen mit der Zusammensetzung ändert, reichten Christiane Stephan optische und elektrische Analysemethoden allein nicht aus. Sie nutzte Neutronen und Synchrotronstrahlung, um die atomare Struktur der Verbindungshalbleiter zu analysieren. Durch die Methoden der Neutronenbeugung mit anschließender Rietveld-Verfeinerung in Kombination mit der anormalen Röntgenbeugung am Synchrotron konnte sie in Pulverproben mit einer definierten Zusammensetzung die Punktdefekte qualitativ und quantitativ bestimmen. Ein zentrales Ergebnis ist, dass sich die Verbindungen CuInSe2, CuGaSe2 und Cu(In,Ga)Se2 im kupferarmen Zusammensetzungsbereich bezüglich ihrer Punktdefekte deutlich unterscheiden. Mit dieser systematischen Untersuchung der Kristallstruktur auf atomarer Ebene können Forscher nun wichtige Rückschlüsse ziehen, um die bestehenden Defektmodelle weiter zu verfeinern.  
 

Sie können die Poster hier anschauen:

SZ

Das könnte Sie auch interessieren

  • Podcast | Der Klimawandel und die Stadt: Mehr Grün oder mehr Photovoltaik?
    Nachricht
    12.08.2022
    Podcast | Der Klimawandel und die Stadt: Mehr Grün oder mehr Photovoltaik?
    Wie umgehen mit begrenztem Platz? Städte und Kommunen müssen sich jetzt auf die Folgen des Klimawandels vorbereiten. Gründächer, begrünte Fassaden und großflächige Entsiegelungen könnten zu einem besseren Mikroklima beitragen. Aber wird der Platz nicht auch für Photovoltaik benötigt?

    In einem kontroversen Gespräch loten die Experten Björn Rau (HZB, BAIP) und Jens Hasse (Deutsches Institut für Urbanistik) die Optionen aus und finden neue Lösungen.

  • Alexander Gray kommt als Humboldt-Fellow ans HZB 
    Nachricht
    12.08.2022
    Alexander Gray kommt als Humboldt-Fellow ans HZB 
    Alexander Gray von der Temple University in Philadelphia, USA, arbeitet gemeinsam mit dem HZB-Physiker Florian Kronast an der Erforschung neuartiger 2D-Quantenmaterialien an BESSY II. Mit dem Stipendium der Alexander von Humboldt-Stiftung kann er diese Zusammenarbeit nun vertiefen. Bei BESSY II will er tiefenaufgelöste röntgenmikroskopische und -spektroskopische Methoden weiterentwickeln, um 2D-Quantenmaterialien und Bauelemente für neue Informationstechnologien zu untersuchen. 
  • Michelle Browne baut neue Nachwuchsgruppe zur Elektrokatalyse am HZB auf
    Nachricht
    01.08.2022
    Michelle Browne baut neue Nachwuchsgruppe zur Elektrokatalyse am HZB auf
    Dr. Michelle Browne baut ab August am HZB ihre eigene Nachwuchsgruppe auf, die von der Helmholtz-Gemeinschaft für die kommenden fünf Jahre mitfinanziert wird. Die Elektrochemikerin aus Irland forscht an elektrolytisch aktiven neuartigen Materialsystemen und will Elektrokatalyseure der nächsten Generation entwickeln, zum Beispiel für die Wasserstoffproduktion. Damit findet sie am HZB eine passende Umgebung für ihr Forschungsthema.