Atomwanderung im Grenzgebiet: Mit bislang unerreichter Auflösung analysieren Forscher Korngrenzen in Dünnschichtsolarzellen

In CIS/CIGSe-Solarzellen ist die Dichte an Korngrenzen hoch.<br />HZB-Wissenschaftler konnten mit bislang unerreichter Aufl&ouml;sung<br />Atomlagen unmittelbar an den Grenzfl&auml;chen analysieren.<br />Foto: HZB

In CIS/CIGSe-Solarzellen ist die Dichte an Korngrenzen hoch.
HZB-Wissenschaftler konnten mit bislang unerreichter Auflösung
Atomlagen unmittelbar an den Grenzflächen analysieren.
Foto: HZB

Aufbau einer CIGSe-Solarzelle<br />

Aufbau einer CIGSe-Solarzelle
© HZB

Dünnschichtsolarzellen werden zukünftig einen großen Anteil am Photovoltaik-Markt haben, davon sind viele Experten überzeugt. Die Zellen aus Kupfer-Indium-Gallium-Selenid oder -Sulfid (CIGSe, CIS) unterscheiden sich in vielen Dingen von der klassischen Siliziumsolarzelle. So tragen in kristallinen Siliziumsolarzellen Korngrenzen substantiell zum Stromverlust bei. Mit CIGSe-Absorbern werden dagegen Wirkungsgrade von mehr als 20 Prozent erreicht, obwohl die polykristallinen Dünnschicht-Materialien eine hohe Dichte an Korngrenzen aufweisen. Woran das liegt, ist bislang noch ungeklärt.

Forscher des Helmholtz-Zentrum Berlin (HZB) konnten nun erstmals experimentell belegen, wie die Korngrenzen innerhalb einer Kupfer-Indium-Gallium-Selenid-Dünnschichtsolarzelle atomar tatsächlich aussehen. Diese Einblicke hat das HZB-Team zusammen mit britischen Kollegen vom SuperSTEM (EPSRC National Facility for Aberration Corrected STEM) gewonnen und in der Fachzeitschrift Physical Review Letters publiziert (DOI: 10.1103/PhysRevLett.108.075502).

Mit hochauflösender Mikroskopie haben die Wissenschaftler um Daniel Abou-Ras Regionen an den Korngrenzen identifiziert, die im Vergleich zum Korninneren eine andere chemische Zusammensetzung haben. Das Besondere daran: solche Regionen mit veränderter Komposition sind zum Teil weniger als ein Nanometer breit. „Noch nie hat jemand mit einer solchen Auflösung Informationen über die Struktur und Zusammensetzung von Korngrenzen an CIGSe-Material erhalten“, berichtet Daniel Abou-Ras vom Institut für Technologie des HZB.

„Wir können erkennen, dass sich in den Atomlagen direkt an den Korngrenzen Atome umlagern. Zum Beispiel diffundieren Kupfer-Atome weg, dafür nehmen Indium-Atome deren Plätze im Kristallgitter ein, und umgekehrt“, erläutert Abou-Ras. Ebenso können Selen-Atome verschwinden und durch Sauerstoffatome ersetzt werden, die als Verunreinigung aus dem Glassubstrat in die Kupfer-Indium-Gallium-Selenid-Schicht diffundieren.

„Eine solche atomare Rekonstruktion an der Korngrenze wird seit einigen Jahren kontrovers diskutiert. Jetzt konnten wir diese erstmals mit Auflösungen im Subnanometerbereich experimentell belegen“, sagt Daniel Abou-Ras.

Die neuen Erkenntnisse wollen die Forscher nun nutzen, um aussagekräftige Bauelementsimulationen an Solarzellen durchzuführen. „Dies alles ist immer noch Grundlagenforschung“, so der Physiker. „Aber sie bringt uns weiter, um die Funktionsweise von Kupfer-Indium-Gallium-Selenid-Solarzellen besser zu verstehen.“

  • Link kopieren

Das könnte Sie auch interessieren

  • Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Science Highlight
    08.01.2025
    Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Neue Einblicke in Lithium-Schwefel-Pouchzellen hat ein Team aus HZB und dem Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS) in Dresden an der BAMline von BESSY II gewonnen. Ergänzt durch Analysen im Imaging Labor des HZB sowie weiteren Messungen ergibt sich ein neues und aufschlussreiches Bild von Prozessen, die Leistung und Lebensdauer dieses industrierelevanten Batterietyps begrenzen. Die Studie ist im renommierten Fachjournal "Advanced Energy Materials" publiziert.

  • Zwei Humboldt-Fellows am HZB
    Nachricht
    09.12.2024
    Zwei Humboldt-Fellows am HZB
    Zwei junge Wissenschaftler sind zurzeit als Humboldt-Postdoktoranden am HZB tätig. Kazuki Morita bringt seine Expertise in Modellierung und Datenanalyse in die Solarenergieforschung im Team von Prof. Antonio Abate ein. Qingping Wu ist Experte für Batterieforschung und arbeitet mit Prof. Yan Lu zusammen an Lithium-Metall-Batterien mit hoher Energiedichte.

  • Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Science Highlight
    05.12.2024
    Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Für die Produktion von Wasserstoff mit Elektrolyse werden Iridiumbasierte Katalysatoren benötigt. Nun zeigt ein Team am HZB und an der Lichtquelle ALBA, dass die neu entwickelten P2X-Katalysatoren, die mit nur einem Viertel des Iridiums auskommen, ebenso effizient und langzeitstabil sind wie die besten kommerziellen Katalysatoren. Messungen an BESSY II haben nun ans Licht gebracht, wie die besondere chemische Umgebung im P2X-Kat während der Elektrolyse die Wasserspaltung befördert.