Mit ILGAR auf Rekordjagd

Eine Chalcopyrit-Dünnschicht-Solarzelle auf dem<br />Sonnensimulator-Teststand.<br />©HZB

Eine Chalcopyrit-Dünnschicht-Solarzelle auf dem
Sonnensimulator-Teststand.
©HZB

HZB-Wissenschaftler bekommen gleich zwei Wirkungsgrad-Rekorde für CIS-Dünnfilm-Solarmodule bestätigt

Der Bedarf an erneuerbaren Energien steigt – Klimawandel und Krise der Atomkraft treiben die Entwicklung an. Im Photovoltaikmarkt spielen CIS-Dünnfilm-Solarmodule eine immer größere Rolle. In ihnen werden Halbleiter eingesetzt – meist Kupfer-Verbindungen – so genannte Chalkopyrite – um aus Sonnenlicht Strom zu gewinnen. Das Institut „Heterogene Materialsysteme“ des Helmholtz-Zentrum Berlin (HZB) hat jetzt gleich zwei Rekord-Wirkungsgrade für solche Solarzellen vom unabhängigen Institut für Solare Energiesysteme (ISE) in Freiburg bestätigt bekommen. Das Besondere: Die so genannte Pufferschicht der Solarzellen ist mit dem umweltfreundlichen, am HZB entwickelten Herstellungsverfahren ILGAR entstanden. Das normalerweise genutzte Schwermetall Cadmium kommt dabei nicht zum Einsatz.

Für alle Komponenten von Dünnfilm-Solarmodulen existieren technologisch günstige Produktionsprozesse – bis vor kurzem jedoch nicht für die Pufferschicht. Das Standard-Material für diese Komponente ist das giftige Cadmium-Sulfid. Das am HZB entwickelte ILGAR-Verfahren (Ion Layer Gas Reaction) hat hier Abhilfe geschaffen: Mit ihm lassen sich in standardisierten Prozessen Halbleiterschichten höchster Qualität für Dünnschichtsolarzellen herstellen. Die dabei produzierten Pufferschichten aus Indiumsulfid oder Zinksulfid/Indiumsulfid ersetzen in Dünnschichtsolarzellen nicht nur das giftige Cadmium. ILGAR macht auch ein Abscheideverfahren überflüssig: das als „Chemical Bath Deposition“ bezeichnete Verfahren, das als langsam und umweltschädlich gilt.

Für ihre Rekordzellen haben die HZB-Wissenschaftler Absorber – also lichtabsorbierende Schichten – genutzt, die standardmäßig in der Industrie im Einsatz sind. Damit wurden ihnen gleich zwei Solarzell-Wirkungsgrade bestätigt. 16,1 Prozent wurden für Zellen erreicht, die mit ILGAR-Indiumsulfid-Pufferschichten (In2S3) auf Bosch CIS Tech Cu(In,Ga)(S,Se)2-Absorbern hergestellt wurden (in-house Messung direkt nach Herstellung 16.8%). Für den Puffer war die HZB-Wissenschaftlerin Johanna Krammer verantwortlich. Sie konnte dabei auf umfangreiche Vorarbeiten der gesamten ILGAR-Gruppe zurückgreifen. Auf seiten der Firma Bosch sind Dr. A. Jasenek und Dr. F. Hergert zu nennen.

Auf Zellen mit Absorbern der Firma AVANCIS konnten die Wissenschaftler bei eigenen Messungen Zell-Wirkungsgrade von 16.4 Prozent feststellen. Gemeinsam mit dem Maschinenbauer Singulus-Stangl Solar wurde ein industrieller Prototyp eines ILGAR in-line-Beschichters entwickelt. Hiermit wurden im HZB bereits In2S3-Puffer mit einer Geschwindigkeit von 10 Millimeter pro Sekunde abgeschieden. Die resultierenden 30x30 Quadratzentimeter Solarmodule auf der Basis von AVANCIS Absorberschichten zeigten mit 13.7 Prozent eine gleichwertige Effizienz wie die mit Cadmiumsulfid gepufferten Referenzmodule.

Im Juni 2011 ist das ILGAR-Team um Professor Dr. Christian-Herbert Fischer auf der Clean Technology Conference & Expo in Boston, USA, für sein patentiertes ILGAR-Verfahren als einer von vier GERMAN HIGH TECH CHAMPIONS im Wettbewerb der Fraunhofer-Gesellschaft ausgezeichnet worden.

HS

  • Link kopieren

Das könnte Sie auch interessieren

  • Zwei Humboldt-Fellows am HZB
    Nachricht
    09.12.2024
    Zwei Humboldt-Fellows am HZB
    Zwei junge Wissenschaftler sind zurzeit als Humboldt-Postdoktoranden am HZB tätig. Kazuki Morita bringt seine Expertise in Modellierung und Datenanalyse in die Solarenergieforschung im Team von Prof. Antonio Abate ein. Qingping Wu ist Experte für Batterieforschung und arbeitet mit Prof. Yan Lu zusammen an Lithium-Metall-Batterien mit hoher Energiedichte.

  • Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Science Highlight
    05.12.2024
    Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Für die Produktion von Wasserstoff mit Elektrolyse werden Iridiumbasierte Katalysatoren benötigt. Nun zeigt ein Team am HZB und an der Lichtquelle ALBA, dass die neu entwickelten P2X-Katalysatoren, die mit nur einem Viertel des Iridiums auskommen, ebenso effizient und langzeitstabil sind wie die besten kommerziellen Katalysatoren. Messungen an BESSY II haben nun ans Licht gebracht, wie die besondere chemische Umgebung im P2X-Kat während der Elektrolyse die Wasserspaltung befördert.
  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.