Rückseitensolarzelle mit Siliziumheterokontakten von HZB und ISFH erreicht Rekord-Wirkungsgrad

Kammf&ouml;rmig ineinandergreifende Metallkontakte auf der<br />sonnenabgewandten Seite der R&uuml;ckseitensolarzellen mit<br />Siliziumheterokontakten. Zu sehen sind mehrere Testzellen<br />auf einem Siliziumwafer.<br />Foto: HZB/Jan Haschke

Kammförmig ineinandergreifende Metallkontakte auf der
sonnenabgewandten Seite der Rückseitensolarzellen mit
Siliziumheterokontakten. Zu sehen sind mehrere Testzellen
auf einem Siliziumwafer.
Foto: HZB/Jan Haschke

Unabhängiges Prüflabor bestätigt 20,2 Prozent

Eine neuartige Solarzelle, die so genannte „Rückkontaktierte Heteroübergang-Solarzelle“ hat einen enormen Sprung beim Wirkungsgrad geschafft: Wurden bis 2011 nur Werte von 15 bis 16 Prozent veröffentlicht, so erreichte eine Weiterentwicklung jetzt einen Wirkungsgrad von 20,2 Prozent. Sie entstand im Institut für Silizium-Photovoltaik (E-I1) des Helmholtz-Zentrum Berlin (HZB) in Zusammenarbeit mit dem Institut für Solarenergieforschung Hameln (ISFH) im Rahmen eines vom Bundesministerium für Umwelt und den Firmen Bosch, Schott Solar, Sunways und Stiebel Eltron unterstützten Projektes. Der Rekord wurde von einem unabhängigen Kalibrierlabor am Fraunhofer Institut für Solare Energiesysteme (ISE) in Freiburg im Breisgau gemessen.

Die rückkontaktierte Heteroübergang-Solarzelle vereinigt zwei verschiedene Photovoltaik-Technologien und ihre Vorteile: Rückkontakte und Siliziumheterokontakte. Bei Solarzellen mit Rückkontakten liegen die Metallfinger, die den bei Sonneneinstrahlung entstehenden Strom einsammeln, auf der Rückseite der Zelle - so werden Verschattungseffekte vermieden und es können breite, widerstandsarme Kontaktfinger verwendet werden. Bei der Heterokontakttechnologie kommen zwei Halbleiter mit unterschiedlichen Bandlücken in einer Solarzelle zum Einsatz. In diesem Fall handelt es sich um kristallines und amorphes Silizium, was an sich schon zu sehr hohen Wirkungsgraden führt. „Beide Verfahren haben den Vorteil, dass sie schon industriell genutzt werden“, sagt HZB-Institutsleiter Prof. Dr. Bernd Rech: „Das Kombinieren beider Konzepte gilt als Möglichkeit, sehr hohe Effizienzen um 25 Prozent zu erreichen. Damit könnte man den Preis pro erzeugtem Watt deutlich senken. Mit unserer Proof-Of-Concept Studie sind wir nun einen beachtlichen Schritt vorangekommen. In Zukunft wird es darum gehen, die Effizienz weiter zu erhöhen und einen möglichst einfachen Herstellungsprozess zu entwickeln.“

Die ersten Veröffentlichungen zu Silizium-basierten Heterorückkontakt-Solarzellen stammen aus dem Jahr 2007- so auch Publikationen aus dem HZB-Institut (Stangl et al.). Die bisher veröffentlichten Wirkungsgrade dieser Zellen lagen bis 2011 im Bereich von 15 bis 16 Prozent. Ende 2011 wurde auf der europäischen Photovoltaikkonferenz von der Entwicklungsabteilung des Solarzellenherstellers LG auch schon über einen Wirkungsgrad von ca. 22 Prozent berichtet, der allerdings bisher nicht von unabhängiger Seite bestätigt wurde. Im Frühjahr 2011 entstand eine kleinflächige Laborzelle mit einem Wirkungsgrad von 20,2 Prozent (Mingirulli et al. pss rrl, März 2011). Die vom HZB und ISFH im Rahmen des Projekts „TopShot“ entwickelte Rückkontakt-Heteroübergang-Solarzelle wurde nun vom Kalibrierlabor ISE CalLab vermessen und hat den höchsten unabhängig bestätigten Wirkungsgrad dieser Solarzellenart erreicht. „Wenn Experten verschiedener Felder gut zusammen arbeiten, beschleunigt das die Entwicklung erheblich“, stellt Prof. Dr. Nils-Peter Harder vom ISFH fest.

Prof. Nils-Peter Harder
ISFH
Tel.: +49 (0)5151-999-631
harder@isfh.de

HS

  • Link kopieren

Das könnte Sie auch interessieren

  • Zwei Humboldt-Fellows am HZB
    Nachricht
    09.12.2024
    Zwei Humboldt-Fellows am HZB
    Zwei junge Wissenschaftler sind zurzeit als Humboldt-Postdoktoranden am HZB tätig. Kazuki Morita bringt seine Expertise in Modellierung und Datenanalyse in die Solarenergieforschung im Team von Prof. Antonio Abate ein. Qingping Wu ist Experte für Batterieforschung und arbeitet mit Prof. Yan Lu zusammen an Lithium-Metall-Batterien mit hoher Energiedichte.

  • Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Science Highlight
    05.12.2024
    Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Für die Produktion von Wasserstoff mit Elektrolyse werden Iridiumbasierte Katalysatoren benötigt. Nun zeigt ein Team am HZB und an der Lichtquelle ALBA, dass die neu entwickelten P2X-Katalysatoren, die mit nur einem Viertel des Iridiums auskommen, ebenso effizient und langzeitstabil sind wie die besten kommerziellen Katalysatoren. Messungen an BESSY II haben nun ans Licht gebracht, wie die besondere chemische Umgebung im P2X-Kat während der Elektrolyse die Wasserspaltung befördert.
  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.