Unter einer Lage Kohlenstoff konserviert

Phoenex-Apparatur<br />

Phoenex-Apparatur
© HZB

HZB-Wissenschaftler entwickeln Verfahren, um elektronische Oberflächenzustände mit Graphen dauerhaft zu machen.

Wissenschaftlern des Helmholtz-Zentrums Berlin (HZB) ist es jetzt gemeinsam mit Kollegen aus Dresden und Jülich gelungen, die elektronischen Oberflächenzustände eines Metalls dauerhaft zu konservieren. Dazu versiegelten sie die Oberfläche des Metalls Iridium mit einer Kohlenstoffschicht, die die Stärke von nur einem Atom hat. Diese als Graphen bezeichnete Modifikation des Kohlenstoffs schirmt äußere Einflüsse wirksam ab. Die Fähigkeit, die elektronischen Oberflächenzustände haltbar zu machen, ist für die Spintronik von größtem Interesse. Ihre Erkenntnisse haben die HZB-Forscher heute in dem Fachjournal „Physical Review Letters“ veröffentlicht (DOI: 10.1103/PhysRevLett.108.066804).

Die Spintronik nutzt das magnetische Moment – den Spin – von Elektronen, um Informationen zu verarbeiten. An Oberflächen lassen sich Elektronen mit unterschiedlichem Spin besonders gut voneinander unterscheiden, denn dort liegt eine sogenannte Symmetriebrechung vor. Allerdings sind die Elektronen an der Oberfläche einer Substanz sehr aktiv und gehen schnell chemische Verbindungen beispielsweise mit Sauerstoff ein. Ein bestimmter Spin-Zustand ließ sich deshalb bisher nur unter extremen Bedingungen, etwa im Ultrahochvakuum, erhalten.

Die Forscher am HZB haben für ihre erfolgreichen Versuche, die elektronische Oberflächenstruktur zu konservieren, mit dem Metall Iridium experimentiert. „Wir haben das Metall katalytisch mit dem Gas Propylen, einen Kohlenwasserstoff, behandelt“, sagt Projektleiter Dr. Andrei Varykhalov von der HZB-Abteilung Magnetisierungsdynamik. An der Oberfläche komme es dann zu zwei Konkurrenzreaktionen, so Varykhalov weiter, bei der die Graphenisierung jedoch die stärkere sei: „So bildet sich auf dem Iridium eine einschichtige Lage von Kohlenstoffatomen.“

Diese Graphenschicht sowie die Spinzustände der obersten Metallschicht haben die HZB-Forscher dann mit ausgefeilten Analysemethoden am Elektronenspeicherring BESSY II untersucht. Dabei kam ein Gerät aus der Teilchenphysik, ein sogenannter Spindetektor, zum Einsatz.

„Wir konnten dabei zunächst nachweisen, dass sich die Spinzustände des Iridiums unter der Graphenschicht nicht verändern. Das haben auch Modellrechnungen am Forschungszentrum Jülich bestätigt“, erklärt Varykhalov: „In einem zweiten Schritt haben wir dann festgestellt, dass sie auch an der Luft exakt erhalten bleiben“ Dies sei ein wichtiger Fortschritt für die Spintronik. Varykhalov: „Bei unserem graphenbeschichteten Iridium handelt es sich noch um ein Forschungsmodell. Wenn es uns aber gelingt, die Spin-Zustände auf einem Isolator mit Hilfe von Graphen zu konservieren, rücken konkrete Anwendungen für die Spintronik in greifbare Nähe.“

HS

  • Link kopieren

Das könnte Sie auch interessieren

  • Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung
    Nachricht
    13.12.2024
    Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung
    Auf dem diesjährigen Nutzertreffen zeichnete  der Freundeskreis des HZB die herausragende Promotionsarbeit von Dr. Dieter Skroblin von der Technischen Universität Berlin mit dem Ernst-Eckhard-Koch-Preis aus. Der Europäische Innovationspreis Synchrotronstrahlung ging an Dr. Manfred Faubel vom Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen und Dr. Bernd Winter vom Fritz-Haber-Institut in Berlin.
  • Modernisierung der Röntgenquelle BESSY II
    Nachricht
    11.12.2024
    Modernisierung der Röntgenquelle BESSY II
    Im Fokus des Nutzertreffens 2024: Das Helmholtz-Zentrum Berlin (HZB) stellt das Upgrade-Programm BESSY II+ vor.  Es ermöglicht, die Weltklasse-Forschung an BESSY II weiter auszubauen und neue Konzepte im Hinblick auf die Nachfolgequelle BESSY III zu erproben.  

  • Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Science Highlight
    05.12.2024
    Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Für die Produktion von Wasserstoff mit Elektrolyse werden Iridiumbasierte Katalysatoren benötigt. Nun zeigt ein Team am HZB und an der Lichtquelle ALBA, dass die neu entwickelten P2X-Katalysatoren, die mit nur einem Viertel des Iridiums auskommen, ebenso effizient und langzeitstabil sind wie die besten kommerziellen Katalysatoren. Messungen an BESSY II haben nun ans Licht gebracht, wie die besondere chemische Umgebung im P2X-Kat während der Elektrolyse die Wasserspaltung befördert.