Durchbruch in der Röntgen-Nanospektroskopie

Schematische Darstellung der mit R&ouml;ntgenlicht verschiedener<br />Photonenenergien durch einen Kapillar-Kondensor beleuchteten<br />zu untersuchenden Titanoxid-St&auml;bchen. Ein hochaufl&ouml;sendes<br />Objektiv &ndash; hier nicht dargestellt &ndash; bildet dann diese Objekte ab.<br />Quelle: HZB

Schematische Darstellung der mit Röntgenlicht verschiedener
Photonenenergien durch einen Kapillar-Kondensor beleuchteten
zu untersuchenden Titanoxid-Stäbchen. Ein hochauflösendes
Objektiv – hier nicht dargestellt – bildet dann diese Objekte ab.
Quelle: HZB

HZB-Forscher ermöglichen Röntgenspektroskopie mit räumlicher Auflösung im Nanometerbereich

Forscher des Helmholtz-Zentrum Berlin (HZB) haben ein neues Mikroskop entwickelt, das röntgenspektroskopische Untersuchungen mit hoher räumlicher Auflösung ermöglicht. Das Mikroskop an der Synchrotronquelle BESSY II des HZB nutzt dafür brillante Röntgenstrahlung.

Mit den konventionellen Röntgenspektroskopie-Methoden konnten bisher keine einzelnen Nanoteilchen studiert werden. Ein wesentliches Ziel bei der Untersuchung von Nanostrukturen oder Nanopartikeln ist jedoch die Bestimmung ihrer Größe und ihrer elektronischen Eigenschaften. Um die notwendige Ortsauflösung im Nanometerbereich zu erhalten, müssen die Strukturen mit Röntgenstrahlung von hoher spektraler Auflösung beleuchtet und mit einem Röntgenobjektiv auf einem Detektor abgebildet werden. Das neue Verfahren haben Dr. Peter Guttmann und das Mikroskopie-Team von PD Dr. Gerd Schneider am HZB-Institut für Weiche Materie und Funktionale Materialien jetzt in der Zeitschrift Nature Photonics publiziert:

  • Flash: http://content.yudu.com/A1vo3s/Nanotimes01-2012/
  • Plain text version live at: http://content.yudu.com/A1vo3s/Nanotimes01-2012/resources/plainText.htm
  • PDF (97 pages, 16Mb): http://www.nano-times.com/files/nanotimes_12_01.pdf

Das große Interesse an den elektronischen Eigenschaften von Nano-Strukturen, die in verschiedenster Weise funktionalisiert werden können, ist in deren möglicher Anwendbarkeit als aktives Material mit großer Oberfläche in kleinem Volumen begründet. Ihr Einsatz ist beispielsweise in Lithium-Ionen-Batterien, in der Photokatalyse zur Herstellung von Wasserstoff als Energieträger oder in Solarzellen denkbar. Mit dem HZB-Mikroskop steht ein neues und attraktives Werkzeug für die Materialwissenschaften und insbesondere auch die Energieforschung zur Verfügung.

Mit der Methode ist es möglich, Nanopartikel in Objektfeldern von bis zu 20 x 20 µm2 gleichzeitig mit einer CCD-Kamera aufzunehmen. In den Objektfeldern finden sich sehr viele der zu untersuchenden Strukturen. Die Forscher erhalten räumlich hochaufgelöste Bilddatensätze mit spektraler Information, indem sie Bilddaten über einen gewählten Energiebereich mit sehr kleinen Energieschritten aufnehmen. Auf diese Weise kann von jedem einzelnen Partikel bzw. von Teilbereichen der Nanostruktur ein Spektrum gewonnen werden. Diese so genannten NEXAFS-Spektren lassen eine Aussage über die elektronische Struktur zu, also letztlich die Anordnung der einzelnen Atome in dem Nano-Partikel. Anders als bei Raster-Röntgenmikroskopie, bei der mit jeder Aufnahme lediglich das Spektrum eines einzelnen Nanopartikels vermessen wird, enthält ein Datensatz bei der neuen Methode bereits statistische Aussagekraft – in ihm sind die Spektren einer großen Zahl von Partikeln enthalten.

„Ein wichtiger Vorteil unseres Mikroskops ist der Zeitgewinn bei gleichzeitig verbesserter spektraler Auflösung von 10.000“, sagt Dr. Peter Guttmann, Physiker am HZB: „Gegenüber den bisher dafür benutzten Raster-Röntgenmikroskopen erlaubt unser Mikroskop eine um den Faktor 100 schnellere Aufnahme von Spektren in großen Objektfeldern. Mit Hilfe des HZB-Elektronenstrahlschreibers können weiterentwickelte Optiken hergestellt werden, um unsere Methode von derzeit 25 nm auf eine Ortsauflösung von 10 nm zu verbessern“.

Mit der hohen räumlichen und spektralen Auflösung, die das Mikroskop erreicht, konnten die Wissenschaftler in Zusammenarbeit mit Co-Autoren aus Belgien, Frankreich und Slowenien die Struktur von speziell aufgebauten Nano-Stäbchen aus Titandioxid untersuchen. Die jetzt vorgestellten Untersuchungen an Nano-Stäbchen erfolgten in einer europäischen Zusammenarbeit im Rahmen der COST action MP0901(NanoTP).

HS

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Science Highlight
    04.11.2024
    BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.
  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.