Dem Leuchten auf den Grund gegangen - Wissenschaftler klären am HZB die Struktur eines designten Proteins auf

Bändermodell des fluoreszierenden Proteins „Dreiklang“, <br />dessen Struktur am Elektronenspeicherring BESSY<br />vermessen wurde.

Bändermodell des fluoreszierenden Proteins „Dreiklang“,
dessen Struktur am Elektronenspeicherring BESSY
vermessen wurde.

Fluoreszierende Proteine sind wichtige Untersuchungswerkzeuge in den Biowissenschaften: Angekoppelt an andere Eiweißstoffe, lassen sich mit ihrer Hilfe Lebensvorgänge in Zellen und Organismen auf molekularer Ebene genau studieren. Die Fluoreszenz-Proteine werden dazu gezielt zum Leuchten gebracht, beziehungsweise bei Bedarf in den nicht-leuchtenden Zustand überführt. Übertragen gesprochen: Sie werden wie eine Lampe an- oder ausgeschaltet. Am Helmholtz-Zentrum Berlin (HZB) ist es Wissenschaftlern nun erstmals gelungen, die mit der Fluoreszenz verbundenen Strukturmerkmale an ein und demselben Proteinkristall im ein- und ausgeschalteten Zustand zu untersuchen. Die Ergebnisse haben sie in Nature Biotechnology veröffentlicht (doi:10.1038/nbt.1952).

Für ihre Arbeit nutzten die Forscher vom Max-Planck-Institut für Biophysikalische Chemie in Göttingen und von der Freien Universität Berlin die MX-Beamline BL14.2 des HZB-Elektronenspeicherrings BESSY, die im Rahmen des Joint Berlin MX-Laboratory zusammen mit der FU-Berlin, der HU, dem MDC und dem FMP betrieben wird. Mit dem intensiven Röntgenlicht der Beamline können Proteinkristalle mit höchster Auflösung vermessen werden. Untersuchungsobjekt war ein grün fluoreszierendes Protein mit dem Namen „Dreiklang“. Der Proteinkristall wurde zunächst bei Raumtemperatur aus dem fluoreszierenden in den nicht-fluoreszierenden Zustand überführt – der Schalter also auf „Aus“ gestellt. Anschließend vermaßen die Wissenschaftler den Kristall im tiefgefrorenen Zustand bei etwa minus 170 Grad Celsius an der BESSY-Beamline.

„Normalerweise geht ein Proteinkristall kaputt, wenn man es nach der Vermessung wieder auf Raumtemperatur erwärmt“, beschreibt Dr. Uwe Müller, HZB-Arbeitsgruppenleiter „Makromolekulare Kristallographie“ das Besondere der Untersuchungen: „In diesem Fall ist es aber gelungen, das Protein funktionsfähig zu halten.“ So war es möglich, den Proteinkristall bei 30 Grad Celsius in den fluoreszierenden Zustand zu bringen, anschließend erneut einzufrieren und ein zweites Mal an der Beamline zu vermessen. Bei der anschließenden Analyse der Daten stellte das Forscherteam fest, dass sich die Struktur des Proteins im ein- beziehungsweise ausgeschalteten Zustand durch die Zahl der eingelagerten Wassermoleküle unterscheidet.

„Mit der Untersuchung des Dreiklang-Moleküls haben wir am BESSY Neuland betreten“, sagt Uwe Müller. Es handele sich dabei um ein designtes Protein, dass es in dieser Form in der Natur nicht gebe. Müller: „Mit der MX-Beamline lassen sich also nicht nur natürliche Proteine, sondern auch völlig neue Materialien untersuchen. Wir sind mit unserer Arbeit noch ein Stück weiter in den Kernbereich der HZB-Forschung `Funktionale Materialien´ gerückt“, so Müller.

HS

  • Link kopieren

Das könnte Sie auch interessieren

  • Ultraschnelle Dissoziation von Molekülen an BESSY II analysiert
    Science Highlight
    02.12.2024
    Ultraschnelle Dissoziation von Molekülen an BESSY II analysiert
    Ein internationales Team hat an BESSY II erstmals beobachtet, wie schwere Moleküle (Bromchlormethan) in kleinere Fragmente zerfallen, wenn sie Röntgenlicht absorbieren. Mit einer neu entwickelten Analysemethode gelang es ihnen, die ultraschnelle Dynamik dieses Prozesses sichtbar zu machen. Dabei lösen die Röntgenphotonen einen „molekularen Katapulteffekt“ aus: Leichte Atomgruppen werden zuerst herausgeschleudert, ähnlich wie Geschosse, die von einem Katapult abgeschossen werden, während die schwereren Atome – Brom und Chlor – sich deutlich langsamer trennen.
  • Protonen gegen Krebs: Neue Forschungsbeamline für innovative Strahlentherapien
    Nachricht
    27.11.2024
    Protonen gegen Krebs: Neue Forschungsbeamline für innovative Strahlentherapien
    Das HZB hat gemeinsam mit der Universität der Bundeswehr München eine neue Beamline für die präklinische Forschung eingerichtet. Sie ermöglicht künftig am HZB Experimente an biologischen Proben zu innovativen Strahlentherapien mit Protonen.
  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.