Das Großprojekt EMIL (Energy Materials In-situ Laboratory Berlin) soll bis Anfang 2015 neue Möglichkeiten für die Forschung an Energiematerialien schaffen

Das Helmholtz-Zentrum Berlin wird gemeinsam mit der Max-Planck-Gesellschaft ein neues dediziertes Röntgen-Strahlrohr an der Synchrotronquelle BESSY II bauen, welches für die Analyse von Materialien für die regenerative Energiegewinnung eingesetzt werden soll. Das neue Großprojekt wurde auf den Berlin-typischen Namen  EMIL (Energy Materials In-situ Laboratory Berlin) getauft und beinhaltet unter anderem das bereits mit dem Namen SISSY angekündigte Großprojekt (Solar Energy Materials In-Situ Spectroscopy at the Synchrotron). Die Begutachtung von EMIL durch ein externes, vom wissenschaftlichen Beirat eingesetztes Gutachtergremium im September 2011 verlief sehr positiv und die Gutachter haben die Realisierung des EMIL-Projekts „enthusiastisch“ befürwortet.

In zwei Monaten muss der Aufsichtsrat des HZB noch grünes Licht für den Ausbau von EMIL geben. Der HZB-Projektleiter, Dr. Klaus Lips, ist mit den Ergebnissen sehr zufrieden: „In dem geplanten Labor werden wir besser als irgendwo sonst auf der Welt Materialherstellung und ultrapräzise Analyse von Schichteigenschaften ohne Unterbrechung des für die Synthese notwendigen Vakuums miteinander verbinden, um noch bessere Dünnschichtsolarzellen und Energiespeicher zu entwickeln.“

Mit EMIL wird somit ein weltweit einzigartiges Labor an BESSY II aufgebaut und betrieben werden, in dem mit Röntgenanalytik Materialien für die Photovoltaik und für photokatalytische Prozesse untersucht werden können. Dabei sollen drei Experimentierplätze aufgebaut werden, an denen Forscher Zugang zu weicher und harter Röntgenstrahlung (60 eV-10 keV) haben.

SISSY heißt der Messplatz, welcher in EMIL für Untersuchungen von Materialien der Photovoltaik zur Verfügung stehen soll. Die Forschung an Katalysatoren soll im gleichen Labor an einem weiteren Messplatz CAT@EMIL erfolgen, der von der MPG finanziert und aufgebaut wird. Beide Messplätze dienen überwiegend der Eigenforschung; jedoch soll trotzdem ein Drittel der Messzeit für externe Nutzer von Universitäten und Industrie zur Verfügung gestellt werden.

Der dritte geplante Messplatz im EMIL-Projekt (60to6), für den noch keine Finanzierung gefunden wurde, wäre hingegen vor allem für die externen Nutzer gedacht. Da die Beamline mit ihren hervorragenden Strahleigenschaften weltweit einzigartige Bedingungen für Materialuntersuchungen bietet, wird EMIL durch den Aufbau von 60to6@EMIL noch attraktiver für externe Forscher werden. Bis zu 80 Prozent der an 60to6 zur Verfügung gestellten Messzeit sollen Nutzer erhalten.

Der Aufbau von EMIL mit seinen Analysetools SISSY und CAT benötigt finanzielle Mittel in Höhe von etwa 18 Millionen Euro. Das HZB wird nach einem positiven Votum durch den Aufsichtsrat 6 Millionen Euro in EMIL investieren und die Max-Planck-Gesellschaft beteiligt sich mit weiteren 6,7 Millionen Euro.  Das Bundesministerium für Bildung und Forschung (BMBF) fördert den Bau der SISSY-Endstation mit 5,7 Millionen Euro aus der Innovationsallianz „Photovoltaik“.

„Dass wir EMIL gemeinsam mit der Max-Planck-Gesellschaft realisieren und für Forscher weltweit beste Analysebedingungen schaffen, wäre ohne die Fusion beider Zentren im Jahr 2009 nicht denkbar. Beim neuen Großprojekt EMIL wird der Gewinn der Fusion besonders sichtbar“, sagt Dr. Markus Sauerborn, Leiter der Stabsabteilung „Strategie und Programme“.

Um EMIL aufzubauen, werden umfangreiche Baumaßnahmen an BESSY II notwendig sein, über die wir Sie fortlaufend unterrichten werden.

Update: Im Dezember 2011 hat der Aufsichtsrat dem Projekt EMIL zugestimmt und damit grünes Licht für die Realisierung gegeben.

SZ

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Science Highlight
    04.11.2024
    BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.
  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.