Messmethoden im Vergleich: Wie dünne Schichten für Solarzellen am besten untersucht werden

Mikroskopaufnahme einer Schicht aus Kupfer-Indium-Sulfid (CIS)

Mikroskopaufnahme einer Schicht aus Kupfer-Indium-Sulfid (CIS)

Alles Gute ist nie beisammen. In der Welt komplexer Geräte gilt dies in besonderem Maße. Will man beispielsweise einen neuen Fernseher oder ein Smartphone kaufen, nutzen deshalb viele Konsumenten vergleichende Bewertungen wie zum Beispiel von Stiftung Warentest. Sie helfen bei der Abwägung: worin unterscheiden sich die Geräte, was können sie, welche Funktionen sind besonders wichtig, worauf kann man möglicherweise verzichten. Bei der Analyse von dünnen Solarzellen-Schichten stehen Wissenschaft und Industrie vor einem ähnlichen Problem.

Es stehen verschiedene Messmethoden zur Verfügung, mit denen man auf unterschiedliche Art und Weise untersuchen kann, wie homogen zum Beispiel eine Schicht ist und wie die beteiligten chemischen Elemente in ihr verteilt sind. Ein internationales Wissenschaftler-Team um Dr. Daniel Abou-Ras vom Helmholtz-Zentrum Berlin hat nun in der Zeitschrift Microscopy and Microanalysis einen Test vorgelegt, bei dem 18 solcher Messmethoden miteinander verglichen wurden.

Über 30 Forscher aus sechs Ländern haben sich an der umfassenden Vergleichsanalyse beteiligt. Sie haben alle dieselbe Dünnschichtprobe aus Kupfer- (Indium, Gallium)-Selenid vermessen wie sie als Absorberschicht in Solarzellen verwendet wird. Dabei haben die Teams Nachweisgrenzen, Orts- und Tiefenauflösungen sowie die Messgeschwindigkeit der einzelnenVerfahren einander gegenüber gestellt.

Daniel Abou-Ras, der Koordinator der Studie, weist darauf hin, dass die Analysemethoden nicht nur zur Untersuchung von Dünnschicht-Solarzellen eingesetzt werden. „Alle Multischichtsysteme kann man mit diesen Techniken untersuchen, zum Beispiel Schichten in optoelektronischen Elementen wie LEDs.“

Speziell bei der Entwicklung von Dünnschichtsolarzellen benötigen Wissenschaftler Informationen darüber, wie sich die Elemente innerhalb der Kupfer-Indium-Gallium-Selen-Schicht verteilen und wie sie sich an den Grenzen zwischen den einzelnen Schichten verhalten. Die Verteilung von Indium und Gallium hat dabei Einfluss auf die optischen Eigenschaften der Absorberschicht. Die Kupfer- und Selen-Verteilung wiederum beeinflusst entstehende  Sekundärphasen, und ebenso wirken Verunreinigungen durch Natrium- und Kaliumspuren auf die elektrischen Eigenschaften der Solarzellen. Daher müssen auch diese detektiert werden.

Daniel Abou-Ras betont eine der wichtigsten Erkenntnisse aus der Studie: „Es gibt keine Technik, die alleine in der Lage ist, Elementverteilungen zuverlässig quantitativ zu detektieren. Dafür ist es in jedem Fall empfehlenswert, mindestens zwei Methoden zu kombinieren.“ Der Anwendungsfall entscheidet dann darüber, welche Techniken besonders geeignet sind. Für die industrielle Qualitätssicherung sind zum Beispiel vor allem Methoden gefragt, die innerhalb weniger Minuten Ergebnisse liefern, dabei aber trotzdem zuverlässig sind wie etwa die Glimmentladungsspektroskopie.
Massenspektroskopietechniken haben sehr geringe Nachweisgrenzen und können deshalb für die Analyse von Spurenelementen eingesetzt werden. Es gibt auch Techniken wie die Röntgendiffraktometrie unter strahlendem Einfall oder die Ellipsometrie, welche die Probe nicht zerstören. Die Ramanspektroskopie kann herangezogen werden, wenn man Aussagen zur Phasenverteilung in einer Dünnschicht benötigt.

Daniel Abou-Ras hebt einen weiteren Effekt der Vergleichsanalyse hervor: „In unserer Vergleichsstudie mussten die jeweiligen Experten ihre Standpunkte über Nachweisgrenzen oder über Orts- und Tiefenauflösungen ihrer Methoden zum Teil neu bewerten. Dadurch können wir nun entsprechende Angaben von Geräteherstellern über Leistungsgrenzen der Techniken besser einschätzen.“

IH

  • Link kopieren

Das könnte Sie auch interessieren

  • Zwei Humboldt-Fellows am HZB
    Nachricht
    09.12.2024
    Zwei Humboldt-Fellows am HZB
    Zwei junge Wissenschaftler sind zurzeit als Humboldt-Postdoktoranden am HZB tätig. Kazuki Morita bringt seine Expertise in Modellierung und Datenanalyse in die Solarenergieforschung im Team von Prof. Antonio Abate ein. Qingping Wu ist Experte für Batterieforschung und arbeitet mit Prof. Yan Lu zusammen an Lithium-Metall-Batterien mit hoher Energiedichte.

  • Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Science Highlight
    05.12.2024
    Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Für die Produktion von Wasserstoff mit Elektrolyse werden Iridiumbasierte Katalysatoren benötigt. Nun zeigt ein Team am HZB und an der Lichtquelle ALBA, dass die neu entwickelten P2X-Katalysatoren, die mit nur einem Viertel des Iridiums auskommen, ebenso effizient und langzeitstabil sind wie die besten kommerziellen Katalysatoren. Messungen an BESSY II haben nun ans Licht gebracht, wie die besondere chemische Umgebung im P2X-Kat während der Elektrolyse die Wasserspaltung befördert.
  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.