Ein Sensor für Wasserstoffbrückenbindungen
Schematische Darstellung eines Wassermoleküls,
welches von Acetonitrilmolekülen umgeben ist.
Wissenschafter des Helmholtz-Zentrum Berlin (HZB) haben einen Sensor für die Wasserstoffbrückenbindungen in flüssigem Wasser gefunden. In Röntgenspektren fanden sie einen Peak, der empfindlich auf das Brechen von Wasserstoffbrücken reagiert. Sie publizieren die Ergebnisse in der online-Ausgabe der Zeitschrift Angewandte Chemie (DOI: 10.1002/anie.201104161).
Sie geben dem Wasser seine besonderen Eigenschaften, sie sind der Grund für viele biochemische Phänomene und ihre Existenz wird sogar im Chemie-Unterricht behandelt: die Wasserstoffbrückenbindungen. Es sind anziehende Kräfte, die sich zwischen benachbarten Wassermolekülen bilden beziehungsweise allgemeiner ausgedrückt: zwischen einem Wasserstoff-Atom und einem elektronegativen Atom wie Sauerstoff oder Stickstoff. Diese anziehenden Kräfte verändern die Geometrie und die elektronische Struktur des Moleküls. Wenn man flüssige Proben mit Röntgenmethoden untersucht, zeigen sich diese Kräfte in den Röntgenspektren, indem sie die verschiedenen Messsignale (Peaks) beeinflussen.
Kathrin Lange und ihre Kollegen vom HZB haben untersucht, welchen Einfluss die Wasserstoffbrückenbindungen auf ihre Röntgenemissionsspektren haben. Sie haben dazu in einer Messreihe zunächst reines Wasser untersucht und dieses dann zunehmend mit Acetonitril verdünnt. Die Vermischung mit Acetonitril führt zum Aufbrechen des Wasserstoffbrücken-Netzwerks zwischen den Wassermolekülen. Dieses Aufbrechen konnten die Wissenschaftler nun erstmals im Spektrum nachweisen: Sie fanden einen Peak, dessen Intensität innerhalb der Verdünnungsreihe abnahm, wobei die Intensitätsabnahme mit der geringer werdenden Anzahl von Wasserstoffbrückenbindungen korrellierte. Damit konnten sie diesen Peak als einen Sensor für Wasserstoffbrückenbindungen identifizieren.
Die Röntgenspektren haben die Wissenschaftler an der Synchrotronquelle BESSY II des HZB aufgenommen. An dem Messplatz hat die Gruppe um Prof. Emad Aziz dafür eine Mikrojet-Anlage aufgebaut. Erst damit war es möglich, flüssige Proben frei von Membranen mithilfe von Synchrotronstrahlung zu untersuchen.
Kathrin Lange betont, dass ihre Ergebnisse nicht nur für das System Wasser/Acetonitril Bedeutung haben. „Unsere Ergebnisse sind ein wichtiger Schritt zum besseren Verständnis der Röntgenemissionspektren von Wasser aber auch ähnlicher Systeme mit Wasserstoffbrückenbindungen.“
IH
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=13375;sprache=de
- Link kopieren
-
Batterieforschung mit dem HZB-Röntgenmikroskop
Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.
-
BESSY II: Neues Verfahren für bessere Thermokunststoffe
Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.
-
Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.