Sauerstoff: Sprunghaftes Verhalten

Dr. Justine Schlappa

Dr. Justine Schlappa

HZB an Forschungen zur Quantenschwebung beteiligt, die das Verständnis vom Entstehen und Brechen chemischer Bindungen erweitert.

Das Brechen der Bindung zwischen zwei Atomen ist ein elementarer Schritt in einer chemischen Reaktion. Dabei trennen sich die Atome bis sie keine Wechselwirkung mehr spüren. Kommt eins der Atome in die Nähe eines weiteren Atoms, kann es von diesem eingefangen werden, so dass eine neue chemische Bindung entsteht. Die bisherige Vorstellung von diesem Prozess: Die Bewegung der Atome verläuft stetig; beim Brechen einer Bindung vergrößert sich der Atomabstand kontinuierlich, beim Entstehen einer neuen Bindung verkleinert er sich ebenso kontinuierlich.

Ein internationales Team von Wissenschaftlerinnen und Wissenschaftlern hat unter Beteiligung von Professor Dr. Alexander Föhlisch und Dr. Justine Schlappa vom Institut „Methoden und Instrumentierung der Synchrotronstrahlung“ am Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) gezeigt, dass diese Ansicht korrigiert werden muss: Brechen beispielsweise Sauerstoffmoleküle auseinander, bewegen sich die Atome nicht kontinuierlich auseinander.

Für diese Entdeckung beleuchteten die Wissenschaftler gasförmigen Sauerstoff mit so genanntem Synchrotronlicht. Das Licht führte zu einer Anregung der Sauerstoffmoleküle – die chemische Bindung zwischen den beiden Sauerstoffatomen des Moleküls bricht vorübergehend. Das von den Molekülen zurückgestreute Licht haben die Forscher gemessen und erhielten so Informationen über den Abstand der Sauerstoffatome zu einem bestimmten Zeitpunkt. Die Energie des eingestrahlten Lichts wählten die Experimentatoren so, dass der Zerfallsprozess auf zwei gleichwertige Arten ablaufen kann. Beide Wege unterscheiden sich nur darin, dass die sich trennenden Atome unterschiedliche Geschwindigkeiten aufweisen.

Die Messergebnisse zeigen, dass es für die tatsächlich gemessenen Abstände zwischen den Sauerstoffatomen nicht beliebige, sondern präferenzielle Werte gibt: Es gibt also Distanzen, wo sich die Sauerstoffatome häufig aufhalten. Zur Erklärung dieses Phänomens zieht die HZB-Wissenschaftlerin Dr. Justine Schlappa den Vergleich mit einer leicht verstimmten Gitarre heran: „Zupft ein Musiker auf den Saiten zwei Töne, deren Frequenzen etwas zueinander verschoben sind, hört er ein periodisches Lauter- und Leiserwerden. Akustiker nennen dieses An- und Abschwellen des Tones Schwebung. Sie verschwindet, wenn das Instrument sauber gestimmt ist und die Frequenzen der Töne exakt aufeinander abgestimmt sind.“

Ursache für die Schwebung ist der Wellencharakter des Schalls. „Wenn sich die Wellen zweier Töne leicht gegeneinander verschieben, kommt es zur Interferenz“, so Schlappa: „Gleichzeitig auftretende Wellenberge verstärken sich, und der Ton wirkt lauter. Treffen hingegen Wellentäler auf Wellenberge, löschen sie sich gegenseitig aus – der Ton wird leiser.“ Genauso wie den Schall betrachten die Physiker nun auch die sich trennenden Sauerstoffatome als Wellen. Justine Schlappa: „Die beiden möglichen Geschwindigkeiten, mit denen sich die Sauerstoffatome trennen, führen zu leicht verschobenen Frequenzen der Sauerstoff-Wellen und verursachen die so genannte Quantenschwebung.“ Auch hier verstärken sich Wellenberge und es kommt zu Stellen im Raum wo Atome vorzugsweise gefunden werden. Wellenberge und Wellentäler heben sich gegenseitig auf mit dem Resultat, dass es Orte gibt, an denen sich keine Atome aufhalten.

„Unsere Beobachtung hat gravierende Konsequenzen für das Verständnis chemischer Reaktionen“, sagt Professor Dr. Alexander Föhlisch, Leiter des HZB-Instituts „Methoden und Instrumentierung der Synchrotronstrahlung“: „Kann kein Atom nachgewiesen werden, können bei diesem Abstand keine weitere chemische Schritte stattfinden“, so Föhlisch weiter: „Dies ist eine gravierende Einschränkung für den Ablauf von chemischen Reaktionen und zwingt uns dazu, im Grundsatz unser Verständnis von chemischen Prozessen zu überdenken.“

A. Pietzsch et al., Spatial Quantum Beats in Vibrational Resonant Inelastic Soft X-ray Scattering at Dissociating States of Oxygen, Phas.; Rev. Lett. 153004 (2011). DOI: 10.1103/PhysRevLett.106.153004

Und:

Y-P Sun et al., Internal Symmetry and Selection Rules in Resonant Inelastic Soft X-ray Scattering", J. Phys. B: At. Mol. Opt. Phys. 44 161002 (2001).

HS

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Science Highlight
    04.11.2024
    BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.
  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.