Ultraschnelle Ummagnetisierung beobachtet

Bild oben Mitte: Während sich die Magnetisierung des Gadolinium<br />(roter Pfeil) noch nicht verändert, hat sich die des Eisens (blauer<br />Pfeil) bereits umgekehrt.<br />Großes <br />aus, die Röntgenpulse (blau) messen diese.<br />Grafik: HZB/Radu

Bild oben Mitte: Während sich die Magnetisierung des Gadolinium
(roter Pfeil) noch nicht verändert, hat sich die des Eisens (blauer
Pfeil) bereits umgekehrt.
Großes
aus, die Röntgenpulse (blau) messen diese.
Grafik: HZB/Radu © Der Laserpuls pink löst die Ummagnetisierung

Ein bisher unbekanntes magnetisches Phänomen könnte die Datenspeicherung um mehrere Größenordnungen beschleunigen.

Die stetig wachsende Informationsflut produziert immer größere Datenmengen, die immer schneller verarbeitet werden sollen. Bislang ist die physikalische Grenze der Aufnahmegeschwindigkeit von magnetischen Speichermedien aber noch weitgehend unerforscht. In Experimenten am Teilchenbeschleuniger BESSY II des Helmholtz-Zentrum Berlin konnten niederländische Forscher nun eine ultraschnelle Ummagnetisierung realisieren und entdeckten dabei ein überraschendes Phänomen.

In magnetischen Speichern werden Daten kodiert, indem man punktuell die Magnetisierung umkehrt. Äquivalent zu „0“ und „1“ arbeiten diese Speicher auf Basis des sogenannten magnetischen Moments der Atome, das im Speichermaterial „parallel“ und „antiparallel“ ausgerichtet sein kann.

Die Ausrichtung bestimmt ein quantenmechanischer Effekt, den die Forscher „Austauschwechselwirkung“ nennen. Im Magnetismus ist das die stärkste und deshalb schnellste „Kraft“. Weniger als 100 Femtosekunden benötigt sie, um die magnetische Ordnung wiederherzustellen, wenn sie gestört wurde. Eine Femtosekunde entspricht einem Millionstel einer Milliardstel Sekunde. Ilie Radu und seine Kollegen untersuchten nun erstmals, das bisher unbekannte Verhalten der magnetischen Ausrichtung, bevor die Austauschwechsel-wirkung einsetzt. Gemeinsam mit Forschern aus Berlin und York publizieren sie die Ergebnisse in der Zeitschrift Nature (10.1038/nature09901, 2011).

Für das Experiment benötigten die Forscher einerseits einen ultrakurzen Laserpuls, der das Material erhitzt und somit die Ummagnetisierung anregt. Zum anderen, mussten sie mit einem ebenso kurzen Röntgenpuls gleichzeitig beobachten, wie sich die Magnetisierung ändert. Diese weltweit einzigartige Kombination aus Femtosekunden-Laser und zirkular polarisiertem Femtosekunden-Röntgenlicht steht Wissenschaftlern nur an der Synchrotron-strahlungsquelle BESSY II zur Verfügung.

In ihrem Experiment erforschten die Wissenschaftler eine Legierung aus Gadolinium, Eisen und Kobalt (GdFeCo), in der die magnetischen Momente natürlicher Weise antiparallel ausgerichtet. Sie beschossen das GdFeCo für 60 Femtosekunden mit einem Laserpuls und verfolgten die Umkehrung mit dem zirkular polarisierten Röntgenlicht, das es zudem ermöglicht zwischen einzelnen Elementen zu unterscheiden. Dabei erlebten sie eine Überraschung: Die Magnetisierung der Fe-Atome kehrte sich bereits nach 300 Femtosekun-den um, die der Gd-Atome benötigte fünfmal so lang. Dadurch waren alle Atome kurzzeitig parallel ausgerichtet und das Material stark magnetisiert. „Das ist genauso merkwürdig, als würde sich der Nordpol eines Magneten langsamer umdrehen, als dessen Südpol“, sagt Ilie Radu.

Mit ihrer Beobachtung konnten die Forscher nicht nur beweisen, dass eine Ummagnetisierung im Femtosekunden-Bereich möglich ist. Auch eine konkrete technische Anwendung lässt sich daraus ableiten: „Auf die magnetische Datenspeicherung übertragen, würde das eine Schreib- und Lesegeschwindigkeit im Terahertz-Bereich bedeuten. Das wäre rund 1000 Mal schneller, als ein heute handelsüblicher Computer“, so Radu.

F. Rott

  • Link kopieren

Das könnte Sie auch interessieren

  • Ultraschnelle Dissoziation von Molekülen an BESSY II analysiert
    Science Highlight
    02.12.2024
    Ultraschnelle Dissoziation von Molekülen an BESSY II analysiert
    Ein internationales Team hat an BESSY II erstmals beobachtet, wie schwere Moleküle (Bromchlormethan) in kleinere Fragmente zerfallen, wenn sie Röntgenlicht absorbieren. Mit einer neu entwickelten Analysemethode gelang es ihnen, die ultraschnelle Dynamik dieses Prozesses sichtbar zu machen. Dabei lösen die Röntgenphotonen einen „molekularen Katapulteffekt“ aus: Leichte Atomgruppen werden zuerst herausgeschleudert, ähnlich wie Geschosse, die von einem Katapult abgeschossen werden, während die schwereren Atome – Brom und Chlor – sich deutlich langsamer trennen.
  • Protonen gegen Krebs: Neue Forschungsbeamline für innovative Strahlentherapien
    Nachricht
    27.11.2024
    Protonen gegen Krebs: Neue Forschungsbeamline für innovative Strahlentherapien
    Das HZB hat gemeinsam mit der Universität der Bundeswehr München eine neue Beamline für die präklinische Forschung eingerichtet. Sie ermöglicht künftig am HZB Experimente an biologischen Proben zu innovativen Strahlentherapien mit Protonen.
  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.