Ultraschnelle Ummagnetisierung beobachtet

Bild oben Mitte: Während sich die Magnetisierung des Gadolinium<br />(roter Pfeil) noch nicht verändert, hat sich die des Eisens (blauer<br />Pfeil) bereits umgekehrt.<br />Großes <br />aus, die Röntgenpulse (blau) messen diese.<br />Grafik: HZB/Radu

Bild oben Mitte: Während sich die Magnetisierung des Gadolinium
(roter Pfeil) noch nicht verändert, hat sich die des Eisens (blauer
Pfeil) bereits umgekehrt.
Großes
aus, die Röntgenpulse (blau) messen diese.
Grafik: HZB/Radu © Der Laserpuls pink löst die Ummagnetisierung

Ein bisher unbekanntes magnetisches Phänomen könnte die Datenspeicherung um mehrere Größenordnungen beschleunigen.

Die stetig wachsende Informationsflut produziert immer größere Datenmengen, die immer schneller verarbeitet werden sollen. Bislang ist die physikalische Grenze der Aufnahmegeschwindigkeit von magnetischen Speichermedien aber noch weitgehend unerforscht. In Experimenten am Teilchenbeschleuniger BESSY II des Helmholtz-Zentrum Berlin konnten niederländische Forscher nun eine ultraschnelle Ummagnetisierung realisieren und entdeckten dabei ein überraschendes Phänomen.

In magnetischen Speichern werden Daten kodiert, indem man punktuell die Magnetisierung umkehrt. Äquivalent zu „0“ und „1“ arbeiten diese Speicher auf Basis des sogenannten magnetischen Moments der Atome, das im Speichermaterial „parallel“ und „antiparallel“ ausgerichtet sein kann.

Die Ausrichtung bestimmt ein quantenmechanischer Effekt, den die Forscher „Austauschwechselwirkung“ nennen. Im Magnetismus ist das die stärkste und deshalb schnellste „Kraft“. Weniger als 100 Femtosekunden benötigt sie, um die magnetische Ordnung wiederherzustellen, wenn sie gestört wurde. Eine Femtosekunde entspricht einem Millionstel einer Milliardstel Sekunde. Ilie Radu und seine Kollegen untersuchten nun erstmals, das bisher unbekannte Verhalten der magnetischen Ausrichtung, bevor die Austauschwechsel-wirkung einsetzt. Gemeinsam mit Forschern aus Berlin und York publizieren sie die Ergebnisse in der Zeitschrift Nature (10.1038/nature09901, 2011).

Für das Experiment benötigten die Forscher einerseits einen ultrakurzen Laserpuls, der das Material erhitzt und somit die Ummagnetisierung anregt. Zum anderen, mussten sie mit einem ebenso kurzen Röntgenpuls gleichzeitig beobachten, wie sich die Magnetisierung ändert. Diese weltweit einzigartige Kombination aus Femtosekunden-Laser und zirkular polarisiertem Femtosekunden-Röntgenlicht steht Wissenschaftlern nur an der Synchrotron-strahlungsquelle BESSY II zur Verfügung.

In ihrem Experiment erforschten die Wissenschaftler eine Legierung aus Gadolinium, Eisen und Kobalt (GdFeCo), in der die magnetischen Momente natürlicher Weise antiparallel ausgerichtet. Sie beschossen das GdFeCo für 60 Femtosekunden mit einem Laserpuls und verfolgten die Umkehrung mit dem zirkular polarisierten Röntgenlicht, das es zudem ermöglicht zwischen einzelnen Elementen zu unterscheiden. Dabei erlebten sie eine Überraschung: Die Magnetisierung der Fe-Atome kehrte sich bereits nach 300 Femtosekun-den um, die der Gd-Atome benötigte fünfmal so lang. Dadurch waren alle Atome kurzzeitig parallel ausgerichtet und das Material stark magnetisiert. „Das ist genauso merkwürdig, als würde sich der Nordpol eines Magneten langsamer umdrehen, als dessen Südpol“, sagt Ilie Radu.

Mit ihrer Beobachtung konnten die Forscher nicht nur beweisen, dass eine Ummagnetisierung im Femtosekunden-Bereich möglich ist. Auch eine konkrete technische Anwendung lässt sich daraus ableiten: „Auf die magnetische Datenspeicherung übertragen, würde das eine Schreib- und Lesegeschwindigkeit im Terahertz-Bereich bedeuten. Das wäre rund 1000 Mal schneller, als ein heute handelsüblicher Computer“, so Radu.

F. Rott

  • Link kopieren

Das könnte Sie auch interessieren

  • Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung
    Nachricht
    13.12.2024
    Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung
    Auf dem diesjährigen Nutzertreffen zeichnete  der Freundeskreis des HZB die herausragende Promotionsarbeit von Dr. Dieter Skroblin von der Technischen Universität Berlin mit dem Ernst-Eckhard-Koch-Preis aus. Der Europäische Innovationspreis Synchrotronstrahlung ging an Dr. Manfred Faubel vom Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen und Dr. Bernd Winter vom Fritz-Haber-Institut in Berlin.
  • Modernisierung der Röntgenquelle BESSY II
    Nachricht
    11.12.2024
    Modernisierung der Röntgenquelle BESSY II
    Im Fokus des Nutzertreffens 2024: Das Helmholtz-Zentrum Berlin (HZB) stellt das Upgrade-Programm BESSY II+ vor.  Es ermöglicht, die Weltklasse-Forschung an BESSY II weiter auszubauen und neue Konzepte im Hinblick auf die Nachfolgequelle BESSY III zu erproben.  

  • Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Science Highlight
    05.12.2024
    Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Für die Produktion von Wasserstoff mit Elektrolyse werden Iridiumbasierte Katalysatoren benötigt. Nun zeigt ein Team am HZB und an der Lichtquelle ALBA, dass die neu entwickelten P2X-Katalysatoren, die mit nur einem Viertel des Iridiums auskommen, ebenso effizient und langzeitstabil sind wie die besten kommerziellen Katalysatoren. Messungen an BESSY II haben nun ans Licht gebracht, wie die besondere chemische Umgebung im P2X-Kat während der Elektrolyse die Wasserspaltung befördert.