Ultraschnelle Ummagnetisierung beobachtet

Bild oben Mitte: Während sich die Magnetisierung des Gadolinium<br />(roter Pfeil) noch nicht verändert, hat sich die des Eisens (blauer<br />Pfeil) bereits umgekehrt.<br />Großes <br />aus, die Röntgenpulse (blau) messen diese.<br />Grafik: HZB/Radu

Bild oben Mitte: Während sich die Magnetisierung des Gadolinium
(roter Pfeil) noch nicht verändert, hat sich die des Eisens (blauer
Pfeil) bereits umgekehrt.
Großes
aus, die Röntgenpulse (blau) messen diese.
Grafik: HZB/Radu © Der Laserpuls pink löst die Ummagnetisierung

Ein bisher unbekanntes magnetisches Phänomen könnte die Datenspeicherung um mehrere Größenordnungen beschleunigen.

Die stetig wachsende Informationsflut produziert immer größere Datenmengen, die immer schneller verarbeitet werden sollen. Bislang ist die physikalische Grenze der Aufnahmegeschwindigkeit von magnetischen Speichermedien aber noch weitgehend unerforscht. In Experimenten am Teilchenbeschleuniger BESSY II des Helmholtz-Zentrum Berlin konnten niederländische Forscher nun eine ultraschnelle Ummagnetisierung realisieren und entdeckten dabei ein überraschendes Phänomen.

In magnetischen Speichern werden Daten kodiert, indem man punktuell die Magnetisierung umkehrt. Äquivalent zu „0“ und „1“ arbeiten diese Speicher auf Basis des sogenannten magnetischen Moments der Atome, das im Speichermaterial „parallel“ und „antiparallel“ ausgerichtet sein kann.

Die Ausrichtung bestimmt ein quantenmechanischer Effekt, den die Forscher „Austauschwechselwirkung“ nennen. Im Magnetismus ist das die stärkste und deshalb schnellste „Kraft“. Weniger als 100 Femtosekunden benötigt sie, um die magnetische Ordnung wiederherzustellen, wenn sie gestört wurde. Eine Femtosekunde entspricht einem Millionstel einer Milliardstel Sekunde. Ilie Radu und seine Kollegen untersuchten nun erstmals, das bisher unbekannte Verhalten der magnetischen Ausrichtung, bevor die Austauschwechsel-wirkung einsetzt. Gemeinsam mit Forschern aus Berlin und York publizieren sie die Ergebnisse in der Zeitschrift Nature (10.1038/nature09901, 2011).

Für das Experiment benötigten die Forscher einerseits einen ultrakurzen Laserpuls, der das Material erhitzt und somit die Ummagnetisierung anregt. Zum anderen, mussten sie mit einem ebenso kurzen Röntgenpuls gleichzeitig beobachten, wie sich die Magnetisierung ändert. Diese weltweit einzigartige Kombination aus Femtosekunden-Laser und zirkular polarisiertem Femtosekunden-Röntgenlicht steht Wissenschaftlern nur an der Synchrotron-strahlungsquelle BESSY II zur Verfügung.

In ihrem Experiment erforschten die Wissenschaftler eine Legierung aus Gadolinium, Eisen und Kobalt (GdFeCo), in der die magnetischen Momente natürlicher Weise antiparallel ausgerichtet. Sie beschossen das GdFeCo für 60 Femtosekunden mit einem Laserpuls und verfolgten die Umkehrung mit dem zirkular polarisierten Röntgenlicht, das es zudem ermöglicht zwischen einzelnen Elementen zu unterscheiden. Dabei erlebten sie eine Überraschung: Die Magnetisierung der Fe-Atome kehrte sich bereits nach 300 Femtosekun-den um, die der Gd-Atome benötigte fünfmal so lang. Dadurch waren alle Atome kurzzeitig parallel ausgerichtet und das Material stark magnetisiert. „Das ist genauso merkwürdig, als würde sich der Nordpol eines Magneten langsamer umdrehen, als dessen Südpol“, sagt Ilie Radu.

Mit ihrer Beobachtung konnten die Forscher nicht nur beweisen, dass eine Ummagnetisierung im Femtosekunden-Bereich möglich ist. Auch eine konkrete technische Anwendung lässt sich daraus ableiten: „Auf die magnetische Datenspeicherung übertragen, würde das eine Schreib- und Lesegeschwindigkeit im Terahertz-Bereich bedeuten. Das wäre rund 1000 Mal schneller, als ein heute handelsüblicher Computer“, so Radu.

F. Rott


Das könnte Sie auch interessieren

  • Einfachere Herstellung von anorganischen Perowskit-Solarzellen bringt Vorteile
    Science Highlight
    17.04.2024
    Einfachere Herstellung von anorganischen Perowskit-Solarzellen bringt Vorteile
    Anorganische Perowskit-Solarzellen aus CsPbI3 sind langzeitstabil und erreichen gute Wirkungsgrade. Ein Team um Prof. Antonio Abate hat nun an BESSY II Oberflächen und Grenzflächen von CsPbI3 -Schichten analysiert, die unter unterschiedlichen Bedingungen produziert wurden. Die Ergebnisse belegen, dass das Ausglühen in Umgebungsluft die optoelektronischen Eigenschaften des Halbleiterfilms nicht negativ beeinflusst, sondern sogar zu weniger Defekten führt. Dies könnte die Massenanfertigung von anorganischen Perowskit-Solarzellen weiter vereinfachen.
  • Spintronik: Ein neuer Weg zu wirbelnden Spin-Texturen bei Raumtemperatur
    Science Highlight
    16.04.2024
    Spintronik: Ein neuer Weg zu wirbelnden Spin-Texturen bei Raumtemperatur
    Ein Team am HZB hat an BESSY II eine neue, einfache Methode untersucht, mit der sich stabile radiale magnetische Wirbel in magnetischen Dünnschichten erzeugen lassen.
  • BESSY II: Wie das gepulste Laden die Lebensdauer von Batterien verlängert
    Science Highlight
    08.04.2024
    BESSY II: Wie das gepulste Laden die Lebensdauer von Batterien verlängert
    Ein verbessertes Ladeprotokoll könnte die Lebensdauer von Lithium-Ionen-Batterien deutlich verlängern. Das Laden mit hochfrequentem gepulstem Strom verringert Alterungseffekte. Dies zeigte ein internationales Team unter der Leitung von Philipp Adelhelm (HZB und Humboldt-Universität) in Zusammenarbeit mit der Technischen Universität Berlin und der Aalborg University in Dänemark. Besonders aufschlussreich waren Experimente an der Röntgenquelle BESSY II.