Exzellenz bei der Lichtbeugung

Sägezahnstruktur eines Blaze-Gitters

Sägezahnstruktur eines Blaze-Gitters

HZB richtet Technologiezentrum für hocheffiziente optische Präzisionsgitter ein

Der Berliner Senat für Wissenschaft und Forschung hat finanzielle Mittel aus dem Europäischen Fonds für regionale Entwicklung (EFRE) bewilligt, um ein Technologiezentrum für hocheffiziente optische Präzisionsgitter am Helmholtz-Zentrum Berlin (HZB) aufzubauen. Das Vorhaben wird vom EFRE mit fünf Millionen Euro gefördert und vom neuen HZB-Institut für Nanometeroptik und Technologie umgesetzt. Das neue Technologiezentrum wird die Bedeutung Berlins als Standort für Präzisionsoptiken weiter stärken. Im Technologiezentrum für hocheffiziente optische Präzisionsgitter sollen neue Beugungsgitter für Synchrotronstrahlung entwickelt werden.

Die vom Beschleunigerring BESSY II des HZB erzeugte Synchrotronstrahlung wird in vielen verschiedenen Forschungsfeldern angewendet: Grundlagenforschung, Lebenswissenschaften, Katalyse- und Materialforschung oder auch Archäometrie. Das Bestrahlen von Proben mit kurzwelligem Röntgenlicht ermöglicht einzigartige Einblicke in die Struktur der Materie.

Um die untersuchten Proben detailliert auswerten zu können, müssen die Wissenschaftler die Eigenschaften des Lichts, mit dem sie ihre Materialien bestrahlen, genau kennen. Deshalb wird das eingestrahlte Röntgenlicht in seine einzelnen Wellenlängen aufgefächert. Beugungsgitter filtern die für die jeweilige Untersuchung benötigte Wellenlänge aus dem Röntgenlicht heraus.

Solche Gitter erhält man, indem Siliziumträger mit einer sehr dünnen Goldlage beschichtet werden. Auf der spiegelnden Oberfläche werden bis zu 4000 Linien pro Millimeter eingeprägt. An diesen Strukturen wird das Röntgenlicht gebeugt, sodass nur das Licht der benötigten Wellenlänge auf die Proben gelenkt wird.

Die Aufgabe des Technologiezentrums ist es, neue Beugungsgitter zu entwickeln, die eine möglichst hohe Lichtausbeute erreichen. Das gelingt den Forschern mit so genannten Blaze-Gittern: das sind Gitter, die ein eingeprägtes Sägezahn-Profil besitzen.

Präzise Sägezahnstrukturen im Nanometerbereich herzustellen, ist bis heute eine technologische Herausforderung. Die Forscher müssen Lösungen finden, um eine Abstandsgenauigkeit der Sägezähne im Nanometerbereich zu realisieren und gleichzeitig einen extrem flachen Sägezahnwinkel zu erreichen.

Der Abstand der Sägezähne im Gitter soll möglichst klein sein, damit Untersuchungen mit einer höheren Auflösung des Lichts (kleinere Wellenlängenungenauigkeit) durchgeführt werden können. Ein flacher Sägezahlwinkel ist wichtig, um die Intensität des Lichts im Röntgenbereich zu erhöhen.

Gelingt es den Forschern, beide Eigenschaften in den Blaze-Gittern umzusetzen, werden sich die Bedingungen für Experimente mit Synchrotronstrahlung deutlich verbessern. 

Im Rahmen des geförderten Projekts wird die Technologie für solche Blaze-Gitter weiterentwickelt. Die EFRE-Förderung ermöglicht nun, ganz neue Wege bei dieser Entwicklungsarbeit gehen zu können. Einerseits wird das Technologiezentrum die bisherigen Kompetenzen in der Mikro- und Nanotechnik einsetzen, um mit neuen Prozessen die Anforderungen an die Präzision der Sägezahnprofile zu erfüllen. Andererseits werden Ideen für neue Gittergeometrien umgesetzt, für deren Realisierung das Technologiezentrum eine weltweit anerkannte Expertise besitzt.

Die neuartigen optischen Elemente finden Anwendung in effizienten Spektroskopie-Experimenten mit Synchrotronstrahlung.

Im Erfolgsfall soll eine Firma ausgegründet werden, die mit den neu entwickelten Technologien solche Blaze-Gitter herstellt. Damit würden neue Hochtechnologie-Arbeitsplätze in Berlin entstehen.
Das neue Technologiezentrum wird in das Institut für Nanometeroptik und Technologie am HZB integriert und durch die Arbeitsgruppe von Dr. Bernd Löchel betreut. Das Institut hat bereits Erfahrung mit verschiedenen Herstellungstechnologien und dem Einsatz von Gittern.

FR / SZ

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Science Highlight
    04.11.2024
    BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.
  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.