Grünes Licht für BERLinPro

Helmholtz-Zentrum Berlin entwickelt neuartige Beschleunigertechnologie

Der Helmholtz-Senat, das oberste Entscheidungsgremium der Helmholtz-Gemeinschaft, hat in seiner Herbstsitzung einstimmig die Realisierung des Projekts BERLinPro unter Federführung des Helmholtz-Zentrum Berlin (HZB) empfohlen. Die Finanzierung des Projekts als strategische Ausbauinvestition ist damit sichergestellt. Über eine Laufzeit von fünf Jahren investieren die Helmholtz-Gemeinschaft, das Land Berlin und das HZB insgesamt 25 Millionen Euro.

Mit dem Projekt BERLinPro will das HZB zusammen mit seinen Partnern in der Helmholtz-Gemeinschaft und weltweit eine neuartige Beschleunigertechnologie weiterentwickeln und das Prinzip des „Energy Recovery Linac" (ERL, deutsch: Linearbeschleuniger mit Energierückgewinnung) auf eine neue technologische Basis stellen. Gelingt BERLinPro, werden die Leistungsparameter von ERLs um Größenordnungen gesteigert. Zahlreiche neue Anwendungen wären mit ERL-Technologien, die auf BERLinPro fußen, in der Zukunft möglich.

Zum Beispiel könnten solche Technologien als so genannte „Inverse Compton Scattering Strahlungsquelle" in der medizinischen Therapie und Diagnostik eingesetzt werden. Für die Teilchenphysik könnten neue Elektronenkühler entwickelt werden, die die Grenzen der konventionell eingesetzten elektrostatischen Kühler überwinden. Des Weiteren kann die Technologie genutzt werden, um die Isotopenzusammensetzung radioaktiver Abfälle in ihrem Containment, vor der Lagerung oder Weiterbehandlung zweifelsfrei zu bestimmen. Und in Synchrotronquellen wird es mit ERL-Technologie möglich, kurze hochbrillante Lichtpulse bei sehr hohen Strömen zu erzeugen.

„Die Empfehlung, das Projekt zu finanzieren, ist eingroßer Erfolg für unser Zentrum", stellte die Geschäftsführerin des HZB, Prof. Dr. Anke Rita Kaysser-Pyzalla, nach der Senatssitzung fest: „Der Helmholtz-Senat zeigt damit sein großes Vertrauen zu den Wissenschaftlerinnen und Wissenschaftlern am HZB. Er bestätigt, dass wir in der Beschleunigertechnologie weltweit eine Spitzenposition innehaben, die wir jetzt ausbauen können."

„Die Helmholtz-Gemeinschaft hat den Auftrag, Lösungen für gesellschaftlich relevante Probleme zu erarbeiten und dafür auch neue Technologien zu entwickeln", sagt Prof. Dr. Jürgen Mlynek, Präsident der Helmholtz-Gemeinschaft: „BERLinPro ist ein wichtiges Vorhaben, mit dem wir ganz neue Türen in der Beschleunigerphysik aufstoßen werden."

Das ERL-Prinizp wurde weltweit bisher nur für kleine Elektronenströme gezeigt. Im Rahmen von BERLinPro soll nun eine kompakte Anlage aufgebaut werden, die alle Schlüsselkomponenten einer Photonenquelle enthält. Während der 2011 beginnenden Bauphase sollen alle kritischen Komponenten entwickelt und erprobt werden – zum Beispiel die hochbrillante Elektronenquelle, supraleitende Beschleunigersektionen sowie Magnetsysteme zur Strahlrückführung. Bei bisher unerreicht hoher Strahlleistung und Brillanz sollen das ERL-Prinzip demonstriert und die Aspekte von Strahlstabilität, Kontrolle des Strahlverlusts und Flexibilität der Strahlparameter studiert werden.

In BERLinPro wird ein Linearbeschleuniger einen Elektronenstrahl erzeugen, der in so genannten Kavitäten – das sind Niob-Metallröhren, die mit flüssigem Helium auf eine Temperatur knapp über dem absoluten Nullpunkt gekühlt werden – auf eine Energie beschleunigt wird, wie es dem Durchlaufen einer Spannung von 100 Millionen Volt entspräche.
Mit dieser Energie fliegen die Elektronen in ein Strahlführungssystem, in dem sie auf eine Kreisbahn gezwungen werden.

BERLinPro soll nun zeigen, dass ein Elektronenstrahl höchster Intensität und Dichte durch dieses Strahlführungssystem geleitet und dann so zum Linearbeschleuniger zurück transportiert werden kann, dass die Elektronen dort im elektromagnetischen Feld abgebremst werden und ihre Energie an das Feld zurückgeben. Die zurückgewonnene Energie des Strahls steht dann zur Verfügung, um einen frischen Elektronenstrahl zu beschleunigen – der wiederum die gleichen exzellenten Parameter aufweist wie der Strahl aus dem Umlauf zuvor.

IH

  • Link kopieren

Das könnte Sie auch interessieren

  • Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Science Highlight
    27.03.2025
    Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.
  • BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Science Highlight
    25.03.2025
    BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Eine blütenförmige Struktur aus einer Nickel-Eisen-Legierung, die nur wenige Mikrometer misst, kann Magnetfelder lokal verstärken. Der Effekt lässt sich durch die Geometrie und Anzahl der „Blütenblätter“ steuern. Das magnetische Metamaterial wurde von der Gruppe um Dr. Anna Palau am Institut de Ciencia de Materials de Barcelona (ICMAB) mit Partnern aus dem CHIST-ERA MetaMagIC-Projekts entwickelt und nun an BESSY II in Zusammenarbeit mit Dr. Sergio Valencia untersucht. Die Mikroblüten ermöglichen vielfältige Anwendungen: Sie können die Empfindlichkeit magnetischer Sensoren erhöhen, die Energie für die Erzeugung lokaler Magnetfelder reduzieren, und am PEEM-Messplatz an BESSY II die Messung von Proben unter deutlich höheren Magnetfeldern ermöglichen.
  • Innovative Batterie-Elektrode aus Zinn-Schaum
    Science Highlight
    24.02.2025
    Innovative Batterie-Elektrode aus Zinn-Schaum
    Metallbasierte Elektroden in Lithium-Ionen-Akkus versprechen deutlich höhere Kapazitäten als konventionelle Graphit-Elektroden. Leider degradieren sie aufgrund von mechanischen Beanspruchungen während der Lade- und Entladezyklen. Nun zeigt ein Team am HZB, dass ein hochporöser Schaum aus Zinn den mechanischen Stress während der Ladezyklen deutlich besser abfedern kann. Das macht Zinn-Schäume als potentielles Material für Lithium-Batterien interessant.