Grünes Licht für BERLinPro

Helmholtz-Zentrum Berlin entwickelt neuartige Beschleunigertechnologie

Der Helmholtz-Senat, das oberste Entscheidungsgremium der Helmholtz-Gemeinschaft, hat in seiner Herbstsitzung einstimmig die Realisierung des Projekts BERLinPro unter Federführung des Helmholtz-Zentrum Berlin (HZB) empfohlen. Die Finanzierung des Projekts als strategische Ausbauinvestition ist damit sichergestellt. Über eine Laufzeit von fünf Jahren investieren die Helmholtz-Gemeinschaft, das Land Berlin und das HZB insgesamt 25 Millionen Euro.

Mit dem Projekt BERLinPro will das HZB zusammen mit seinen Partnern in der Helmholtz-Gemeinschaft und weltweit eine neuartige Beschleunigertechnologie weiterentwickeln und das Prinzip des „Energy Recovery Linac" (ERL, deutsch: Linearbeschleuniger mit Energierückgewinnung) auf eine neue technologische Basis stellen. Gelingt BERLinPro, werden die Leistungsparameter von ERLs um Größenordnungen gesteigert. Zahlreiche neue Anwendungen wären mit ERL-Technologien, die auf BERLinPro fußen, in der Zukunft möglich.

Zum Beispiel könnten solche Technologien als so genannte „Inverse Compton Scattering Strahlungsquelle" in der medizinischen Therapie und Diagnostik eingesetzt werden. Für die Teilchenphysik könnten neue Elektronenkühler entwickelt werden, die die Grenzen der konventionell eingesetzten elektrostatischen Kühler überwinden. Des Weiteren kann die Technologie genutzt werden, um die Isotopenzusammensetzung radioaktiver Abfälle in ihrem Containment, vor der Lagerung oder Weiterbehandlung zweifelsfrei zu bestimmen. Und in Synchrotronquellen wird es mit ERL-Technologie möglich, kurze hochbrillante Lichtpulse bei sehr hohen Strömen zu erzeugen.

„Die Empfehlung, das Projekt zu finanzieren, ist eingroßer Erfolg für unser Zentrum", stellte die Geschäftsführerin des HZB, Prof. Dr. Anke Rita Kaysser-Pyzalla, nach der Senatssitzung fest: „Der Helmholtz-Senat zeigt damit sein großes Vertrauen zu den Wissenschaftlerinnen und Wissenschaftlern am HZB. Er bestätigt, dass wir in der Beschleunigertechnologie weltweit eine Spitzenposition innehaben, die wir jetzt ausbauen können."

„Die Helmholtz-Gemeinschaft hat den Auftrag, Lösungen für gesellschaftlich relevante Probleme zu erarbeiten und dafür auch neue Technologien zu entwickeln", sagt Prof. Dr. Jürgen Mlynek, Präsident der Helmholtz-Gemeinschaft: „BERLinPro ist ein wichtiges Vorhaben, mit dem wir ganz neue Türen in der Beschleunigerphysik aufstoßen werden."

Das ERL-Prinizp wurde weltweit bisher nur für kleine Elektronenströme gezeigt. Im Rahmen von BERLinPro soll nun eine kompakte Anlage aufgebaut werden, die alle Schlüsselkomponenten einer Photonenquelle enthält. Während der 2011 beginnenden Bauphase sollen alle kritischen Komponenten entwickelt und erprobt werden – zum Beispiel die hochbrillante Elektronenquelle, supraleitende Beschleunigersektionen sowie Magnetsysteme zur Strahlrückführung. Bei bisher unerreicht hoher Strahlleistung und Brillanz sollen das ERL-Prinzip demonstriert und die Aspekte von Strahlstabilität, Kontrolle des Strahlverlusts und Flexibilität der Strahlparameter studiert werden.

In BERLinPro wird ein Linearbeschleuniger einen Elektronenstrahl erzeugen, der in so genannten Kavitäten – das sind Niob-Metallröhren, die mit flüssigem Helium auf eine Temperatur knapp über dem absoluten Nullpunkt gekühlt werden – auf eine Energie beschleunigt wird, wie es dem Durchlaufen einer Spannung von 100 Millionen Volt entspräche.
Mit dieser Energie fliegen die Elektronen in ein Strahlführungssystem, in dem sie auf eine Kreisbahn gezwungen werden.

BERLinPro soll nun zeigen, dass ein Elektronenstrahl höchster Intensität und Dichte durch dieses Strahlführungssystem geleitet und dann so zum Linearbeschleuniger zurück transportiert werden kann, dass die Elektronen dort im elektromagnetischen Feld abgebremst werden und ihre Energie an das Feld zurückgeben. Die zurückgewonnene Energie des Strahls steht dann zur Verfügung, um einen frischen Elektronenstrahl zu beschleunigen – der wiederum die gleichen exzellenten Parameter aufweist wie der Strahl aus dem Umlauf zuvor.

IH

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Science Highlight
    04.11.2024
    BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.
  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.