Durchlässige Grenze - Tunneln erwünscht

Die Korngrenzen in bestimmten Dünnschicht-Materialien sind für Ladungsträger kein Hindernis. Vielmehr helfen sie dabei, Verluste beim Ladungstransport zu verringern. Forschern vom Helmholtz-Zentrum Berlin gelingt experimenteller Nachweis für eine gewagte Theorie.

Das Prinzip einer Solarzelle ist einfach: das auftreffende Sonnenlicht setzt Ladungsträger im Inneren des lichtaktiven Materials frei, und die Ladungsträger bewegen sich zu den angeschlossenen Kontakten. Kompliziert wird es, weil die Ladungsträger auf ihrem Weg mehrere Hindernisse überwinden müssen. Diese aus dem Weg zu räumen ist ein zentrales Anliegen der Photovoltaik-Forschung. Wissenschaftler vom Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) haben nun ein wichtiges physikalisches Grundpro­blem gelöst, das beim Konzipieren moderner Dünnschichtsolarzellen auftritt. Sie publizieren dies in der kommenden Ausgabe der Physical Review Letters (DOI: 10.1103/PhysRevLett.104.196602).

In Materialien, die aus vielen kleinen Kristallen - so genannten Körnern - bestehen, stellen die Korngrenzen Hindernisse dar. Trotzdem gibt es die Beobachtung, dass bei bestimmten Kupfer-Mineralen (Chalkopyrite) die einkristalline Form weniger effektiv den Strom leitet als die polykristallinen Materialien mit den vielen vorhandenen Korngrenzen. Warum das so ist, haben Michael Hafemeister und Sascha Sadewasser vom HZB zusammen mit Susanne Siebentritt von der Universität Luxemburg aufgeklärt. Sie haben nachgewiesen, dass sich an den Korngrenzen eine elektrische Barriere aufbaut, die die Ladungsträger aufgrund ihrer quantenmechanischen Eigenschaften durchtunneln können.

„Dass in den Chalkopyriten eine solche Barriere existieren muss, hat eine amerikanische Forschergruppe bereits 2003 mithilfe von Computersimulationen vorhergesagt. Wir haben nun im Experiment gezeigt, dass die Barriere tatsächlich existiert“, erläutert Sascha Sadewasser. 

Dies gelang mit einem experimentellen Trick: Michael Hafemeister und seine Kollegen haben einen Chalkopyrit-Kristall (Kupfer-Gallium-Diselenid) im Doppelpack gezüchtet, genauer gesagt: ein Kristallpaar, das zusammen wächst. Sie verwendeten dazu einen aus zwei großen Körnern bestehenden Gallium-Arsenid-Kristall als Unterlage und dampften eine Schicht aus Chalkopyrit auf. Die wachsende Schicht übernimmt dabei die Struktur des Gallium-Arsenid-Kristalls mit der Folge, dass man ein Modellsystem mit einer definierten Korngrenze erhält. Mit einer ganzen Batterie aufwändiger Messtechniken untersuchten die Physiker die Grenze und an der Grenze das Verhalten der elektrischen Ladungsträger. Unter anderem haben sie zum ersten Mal den elektrischen Widerstand zwischen den Kristalliten gemessen und dabei herausgefunden, dass die Barriere den Stromfluss mit rund einem halben Elek­tronenvolt gewaltig bremst.

Diese Messung brachte schließlich den entscheidenden Hinweis: „Ohne die Barriere hätte der elektrische Widerstand laut den physikalischen Gegebenheiten geringer sein müssen“, sagt Sascha Sadewasser. Das heißt, für die Stromleitung ist die Barriere zwar ein Hindernis, doch zugleich sorgt sie dafür, dass an der Stelle nicht so viele Ladungsträger – negativ geladene Elek­tronen und positiv geladene Atomrümpfe (Löcher) rekombinieren können. „In den Chalkopyriten sind natürlicherweise viele positive Ladungsträger vorhanden. Die Barriere sorgt dafür, dass sie sich nicht in der Nähe der Grenze aufhalten. Damit wird verhindert, dass die heranströmenden freien Elektronen, die durch den Lichteinfall erzeugt wurden, weggefangen werden“, erläutert Sadewasser. Die Elektronen können so ungestört durch die Barriere tunneln.     

Viele Grenzen, guter Stromfluss – dieses Geheimnis der polykristallinen Chalkopyrite ist somit aufgeklärt. Und möglicherweise kann man mit dieser Erkenntnis die Korngrenzen nun so modifizieren, dass der Wirkungsgrad der Solarzellen noch ein bisschen steigt.

  • Link kopieren

Das könnte Sie auch interessieren

  • Zwei Humboldt-Fellows am HZB
    Nachricht
    09.12.2024
    Zwei Humboldt-Fellows am HZB
    Zwei junge Wissenschaftler sind zurzeit als Humboldt-Postdoktoranden am HZB tätig. Kazuki Morita bringt seine Expertise in Modellierung und Datenanalyse in die Solarenergieforschung im Team von Prof. Antonio Abate ein. Qingping Wu ist Experte für Batterieforschung und arbeitet mit Prof. Yan Lu zusammen an Lithium-Metall-Batterien mit hoher Energiedichte.

  • Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Science Highlight
    05.12.2024
    Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Für die Produktion von Wasserstoff mit Elektrolyse werden Iridiumbasierte Katalysatoren benötigt. Nun zeigt ein Team am HZB und an der Lichtquelle ALBA, dass die neu entwickelten P2X-Katalysatoren, die mit nur einem Viertel des Iridiums auskommen, ebenso effizient und langzeitstabil sind wie die besten kommerziellen Katalysatoren. Messungen an BESSY II haben nun ans Licht gebracht, wie die besondere chemische Umgebung im P2X-Kat während der Elektrolyse die Wasserspaltung befördert.
  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.