Daten am Ende des Tunnels

Geordnete Spins verbessern Computer-Arbeitsspeicher

Forscher vom Helmholtz-Zentrum Berlin (HZB) und der  französischen Grundlagenforschungsorganisation CNRS, südlich von Paris, steuern erstmals mit elektrischen Feldern eine als „Spin“ bezeichnete Eigenschaft von Elektronen so, dass damit Daten dauerhaft gespeichert werden können. Das Prinzip könnte nicht nur die Arbeitsspeicher in Computern revolutionieren, sondern auch andere elektronische Bauteile verbessern.

Neuartige Arbeitsspeicher nutzen den so genannten „magnetischen Tunnelwiderstand“ TMR (Tunnel Magneto Resistance). Dabei werden zwei dünne Magnetschichten durch einen nur einen Millionstel Millimeter dicken Isolator voneinander getrennt. Obwohl der Isolator eigentlich keine Elektronen durchlässt, können einige der Ladungsträger trotzdem wie durch einen Tunnel auf die andere Seite schlüpfen. Möglich ist dies aufgrund eines Quanteneffekts. Alle Elektronen haben einen Eigendrehimpuls, was Physiker als Spin bezeichnen. Der Spin kann entweder den Zustand „up“ oder „down“ annehmen. Enthalten beide Magnetschichten eines TMR überwiegend Spins der gleichen Orientierung, tunneln die Elektronen viel leichter als wenn eine Magnetschicht vor allem „up“-Spins und die andere überwiegend „down“-Spins enthält.

Mit solch einem Bauelement, in dem beide Magnetschichten Elektronen mit gleichem Spin haben, kann man einen Speicher herstellen, der ähnlich wie ein herkömmlicher Arbeitsspeicher rasch und oft mit Daten neu beschrieben werden kann.

Derartige auch als MRAM bezeichnete Arbeitsspeicher benötigen zum Schreiben der Daten aber relativ starke Magnetfelder und daher auch viel Energie. Das könnte sich mit der Grundlagenforschung ändern, die CNRS-Forscher Vincent Garcia und Manuel Bibes jetzt im Wissenschaftsmagazin Science vorstellen: Sie haben den Isolator aus einer Bariumtitanat genannten Verbindung hergestellt. HZB-Forscher Sergio Valencia und Florian Kronast haben die chemische Zusammensetzung der beteiligten Magnetschichten mithilfe der „Röntgenabsorptionsspektroskopie“ untersucht.

Mit einem elektrischen Feld können die Wissenschaftler diesen Isolator so schalten, dass er die Spins der Elektronen in den angrenzenden magnetischen Schichten und damit auch das Tunneln beeinflusst. Da die Schaltung im Isolator auch ohne Strom erhalten bleibt, könnte man nach diesem Vorbild zum Beispiel Arbeitsspeicher für PCs bauen, die wenig Energie verbrauchen und trotzdem die Daten dauerhaft speichern.

Artikel in Science, DOI: 10.1126/science.1184028

Ferroelectric control of spin polarization: V. Garcia, M. Bibes, L. Bocher, S. Valencia, F. Kronast, A. Crassous, X. Moya, S. Enouz-Vedrenne, A. Gloter, D. Imhoff, C. Deranlot, N. D. Mathur, S. Fusil, K. Bouzehouane and A. Barthélémy

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Science Highlight
    25.03.2025
    BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Eine blütenförmige Struktur aus einer Nickel-Eisen-Legierung, die nur wenige Mikrometer misst, kann Magnetfelder lokal verstärken. Der Effekt lässt sich durch die Geometrie und Anzahl der „Blütenblätter“ steuern. Das magnetische Metamaterial wurde von der Gruppe um Dr. Anna Palau am Institut de Ciencia de Materials de Barcelona (ICMAB) mit Partnern aus dem CHIST-ERA MetaMagIC-Projekts entwickelt und nun an BESSY II in Zusammenarbeit mit Dr. Sergio Valencia untersucht. Die Mikroblüten ermöglichen vielfältige Anwendungen: Sie können die Empfindlichkeit magnetischer Sensoren erhöhen, die Energie für die Erzeugung lokaler Magnetfelder reduzieren, und am PEEM-Messplatz an BESSY II die Messung von Proben unter deutlich höheren Magnetfeldern ermöglichen.
  • HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Nachricht
    31.01.2025
    HZB-Magazin lichtblick - die neue Ausgabe ist da!
    In der Titelgeschichte stellen wir Astrid Brandt vor. Sie leitet die Nutzerkoordination am Helmholtz-Zentrum Berlin. Mit ihrem Team behält sie stets den Überblick über Anträge, Messzeiten und Publikationen der bis zu 1.000 Gastforschenden, die jedes Jahr zu BESSY II kommen. Naturwissenschaften faszinierten sie schon immer.

    Doch auch ihre zweite Leidenschaft, die Musik, hat sie bis heute nicht losgelassen.

  • Nanoinseln auf Silizium mit schaltbaren topologischen Texturen
    Science Highlight
    20.01.2025
    Nanoinseln auf Silizium mit schaltbaren topologischen Texturen
    Nanostrukturen mit spezifischen elektromagnetischen Texturen versprechen Anwendungsmöglichkeiten für die Nanoelektronik und zukünftige Informationstechnologien. Es ist jedoch sehr schwierig, solche Texturen zu kontrollieren. Nun hat ein Team am HZB eine bestimmte Klasse von Nanoinseln auf Silizium mit chiralen, wirbelnden polaren Texturen untersucht, die durch ein externes elektrisches Feld stabilisiert und sogar reversibel umgeschaltet werden können.