Zweifacher Erfolg für das HZB bei der SAS-Konferenz

SAS-Konferenz im Jahr 2015 in Berlin!  

Die internationale Konferenz „Small Angle Scattering“ (SAS) wird im Jahr 2015 in Berlin stattfinden. Das entschied sich während der SAS2009, die vom 13. bis 18. September in Oxford stattfand.   Bei der SAS-Konferenzreihe steht die Forschung zu zerstörungsfreien Strukturcharakterisierungs-Methode der Kleinwinkelstreuung („Small Angle Scattering“) im Vordergrund, mit denen sich komplexe Materialsysteme untersuchen lassen . Die SAS-Konferenz ist eine ideale Plattform, Röntgen- wie auch Neutronenanwendungen in verschiedenen Forschungsdisziplinen zu verknüpfen. Die Ausrichtung der SAS2015 eröffnet somit gute Möglichkeiten sowohl den Wissenschaftsstandort Berlin weiter in den Mittelpunkt der internationalen Wissenschaftsgemeinde zu rücken als auch die Forschungsinfrastruktur des HZB und seiner Förderung der komplementären Anwendung von Photonen und Neutronen.   Das HZB bewarb sich in Kooperation mit dem Stranski-Institut der Technischen Universität Berlin und dem Max-Planck-Institut für Kolloid- und Grenzflächenforschung für die Ausrichtung der SAS2015 und überzeugte mit seinem Konzept. Von 260 Wählern hatten etwa 70% für Sydney als Austragungsort im Jahr 2012 in Kombination mit Berlin als Ort für die SAS2015 gestimmt. Zur Wahl für die Ausrichtung der SAS-Konferenzen, die in der Regel alle 3 Jahre tagt, standen Sydney, Knoxville und Berlin.   Federführend bei der Vorbereitung und Durchführung der erfolgreichen Bewerbung waren Professor Dr. Peter Fratzl (Max-Planck-Institut für Kolloid- und Grenzflächenforschung) als Vortragender, Professor Dr. M. Gradzielski (TU Berlin), Dr. Stephan Roth (DESY), Dr. Daniel Clemens (HZB), Dr. Armin Hoell (HZB) sowie die Kommunikationsabteilung des HZB.    

Sylvio Haas Posterpreisträger der SAS2009 

Der Nachwuchswissenschaftler Sylvio Haas, Institut für Angewandte Materialforschung des HZB, ist Posterpreisträger der SAS 2009. Prämiert wurden vier Forschungsarbeiten von insgesamt 330 Posterbeiträgen, die in Oxford präsentiert wurden.  Der junge Forscher erhielt den Preis für seine herausragende Arbeit zur Nanostrukturaufklärung mit der ASAXS-Methode (Anomalous Small-Angle X-ray Scattering).   Während die Kleinwinkelstreuung (Small-Angle Scattering) zerstörungsfrei gemittelte Informationen über Nanostrukturen, wie beispielsweise die Größenverteilung, Form und Orientierung von Nanoteilchen, liefert, ist es mit Anomalous Small-Angle X-ray Scattering (ASAXS) darüber hinaus möglich, zusätzlich die chemische Zusammensetzung dieser Nanostrukturen zu bestimmen. Durch diese zusätzlichen Informationen können bei komplexen Materialien auch „falsche“ Strukturmodelle widerlegt werden. Bei einem ASAXS-Experiment wird die verwendete Röntgenenergie verändert. Dadurch erhöhen oder erniedrigen sich die Kontraste der einzelnen Strukturen. Die ASAXS Methode kann auf verschiedenste Materialien (Legierungen, biologische Systeme, Polymere, Katalysatormaterialien, etc.) angewendet werden.   Sylvio Haas konnte mit der ASAXS-Methode in seiner Arbeit erstmals die Zusammensetzung von Nanokristallen in einer Glaskeramik quantitativ bestimmen. Diese Nanokristalle sind photonisch aktiv. Photonische Kristalle können mit ihrer besonderen Gitterstruktur bestimmte Wellenlängen elektromagnetischer Strahlung filtern oder verändern. Sylvio Haas beobachtete bei Aktivierung mit Photonen geringer Frequenz bei seinen Kristallen eine Frequenzerhöhung. Das heißt aus infra-rotem wird grünes Licht. Mögliche Anwendungsgebiete solcher Glaskeramiken liegen zum Beispiel bei Hochleistungslasern oder optischen Verstärkern.   Auf Grundlage dieser sehr umfangreichen Forschungsarbeit wird der junge Wissenschaftler nun seine Dissertation schreiben. Hier finden Sie das Poster von Sylvio HAAS mit dem Thema 'Simultaneous structure and chemical nano-analysis of an efficient frequency upconversion glass-ceramic by ASAXS' Weitere Preisträger waren Dr. Anke Maerten und Johannes Prass (Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Golm) sowie Dr. Alexander Hexemer (Lawrence Berkley National Laboratory, USA).    

Sahe

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Science Highlight
    04.11.2024
    BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.
  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.