Grüner Wasserstoff: Iridium-Katalysatoren mit Titanoxiden verbessern

Die Iridium-Atome (rot) sind in unterschiedliche Titanoxide eingebettet, die für mehr Stabilität sorgen. 

Die Iridium-Atome (rot) sind in unterschiedliche Titanoxide eingebettet, die für mehr Stabilität sorgen.  © Marianne van der Merwe

Anoden für die elektrolytische Aufspaltung von Wasser bestehen meist aus Iridium-basierten Materialien. Um die Stabilität des Iridium-Katalysators zu erhöhen, hat nun ein Team am HZB mit einer Gruppe des HI-ERN eine Probe hergestellt, in der die Konzentration von Iridium und Titanoxiden systematisch variiert. Analysen der einzelnen Probensegmente an BESSY II im EMIL-Labor zeigten, dass sich die Stabilität des Iridium-Katalysators signifikant steigern lässt.

Eine Option, um Energie aus Sonne oder Wind zu speichern, ist die Produktion von „grünem“ Wasserstoff durch Elektrolyse. Wasserstoff speichert Energie in chemischer Form und setzt sie bei Verbrennung wieder frei, wobei keine Abgase entstehen, sondern nur Wasser. Heute wird Iridium als „State-of-the Art“-Katalysator genutzt. Allerdings löst sich Iridium im sauren Milieu der Elektrolysezelle zunehmend auf, so dass die katalytische Wirkung schnell nachlässt.

„Wir wollten untersuchen, ob sich die Stabilität des Katalysators durch Beimischung unterschiedlicher Anteile von Titanoxid verbessert“, sagt Prof. Dr. Marcus Bär (HZB). Titanoxid ist katalytisch zwar nicht aktiv, aber stabil. „Wir hatten Hinweise darauf, dass die Titanoxid-Präsenz sich positiv auf die Stabilität auswirkt, ohne die katalytische Wirkung des Iridiums zu beeinflussen. Wir wollten aber auch herausfinden, ob es da ein ideales Mischungsverhältnis gibt.“

Eine Probe als Materialbibliothek

Die Probe wurde am Helmholtz-Institut Erlangen-Nürnberg für Erneuerbare Energien (HI-ERN) im Team von Prof. Dr. Olga Kasian durch Aufsputtern von Titan und Iridium mit lokal variierender Zusammensetzung hergestellt. Es handelt sich um eine so genannte Dünnfilm-Materialbibliothek, auf der die Iridium-Anteile von 20 % bis 70 % variieren.

An BESSY II analysierte das Team mit röntgenspektroskopischen Methoden, wie sich die chemische Struktur in Abhängigkeit vom Iridium-Gehalt der gemischten Iridium-Titanoxidproben änderte. Dabei spielten mehrere Effekte eine Rolle: So verbesserte die Gegenwart von Titan-Suboxiden (wie TiO und TiOx) die Leitfähigkeit des Materials. Spannend war auch der Befund, dass sich ein Teil der Titanoxide schneller im wässrigen Elektrolyten löste als Iridium, wodurch Mikroporen an der Oberfläche entstanden. Dadurch kamen mehr Iridium-Atome aus unteren Lagen in Kontakt mit dem Elektrolyten, was die Sauerstoffentwicklungsreaktion beschleunigte. Der Haupteffekt war jedoch, dass die Anwesenheit von Titanoxiden (TiO2, sowie TiO und TiOx) tatsächlich die Auflösung von Iridium deutlich reduzierte. „Bei der Probe mit 30 % Titanzusatz im Vergleich zu einem reinen Iridium-Elektrodenmaterial konnten wir eine um etwa 70 % geringere Iridium-Auflösung sehen“, sagt Marianne van der Merwe, die die Messungen im Rahmen ihrer Promotion bei Marcus Bär durchgeführt hatte.

Praxisrelevanz hoch

Doch wie relevant sind solche Ergebnisse aus der Laborforschung für die Industrie? „Wenn es etablierte Technologien gibt, ist es zunächst immer schwer, etwas zu ändern“, sagt Marcus Bär. „Aber wir zeigen hier, wie sich mit überschaubarem Aufwand die Stabilität der Anoden erhöhen lässt.“

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II haben nun ein Team von Wissenschaftlern mehrerer chinesischer Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Science Highlight
    04.11.2024
    BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.
  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.