Solarer Wasserstoff: Bessere Photoelektroden durch Blitz-Erhitzung

Herstellung der Photoelektroden: Ein intensiver Laserpuls trifft auf ein Target mit dem Material, verwandelt es in Plasma und scheidet es als Dünnschicht auf einem Substrat ab.

Herstellung der Photoelektroden: Ein intensiver Laserpuls trifft auf ein Target mit dem Material, verwandelt es in Plasma und scheidet es als Dünnschicht auf einem Substrat ab. © R. Gottesman/HZB

Um mit Sonnenlicht Wasser elektrolytisch aufzuspalten, werden Photoelektroden gebraucht. Kostengünstige Metalloxid-Dünnschichten mit hoher elektronischer Qualität eignen sich sehr gut dafür, doch ihre Herstellung ist komplex. Insbesondere lässt sich die Qualität der Metalloxid-Dünnschichten nur durch eine thermische Behandlung bei sehr hohen Temperaturen verbessern. Dabei würde jedoch das darunter liegende leitfähige Glassubstrat schmelzen. Ein Team am HZB-Institut für Solare Brennstoffe hat dieses Dilemma nun gelöst: Ein hochintensiver Lichtpuls heizt die halbleitende Metalloxid-Dünnschicht blitzschnell direkt auf, ohne das Substrat zu beschädigen.

Photoelektroden bestehen aus halbleitenden Dünnschichten auf transparenten, leitfähigen Glassubstraten. Sonnenlicht kann an den Oberflächen von Photoelektroden elektrochemische Reaktionen direkt anregen und zum Beispiel Wasser in Sauerstoff und Wasserstoff aufspalten. Dadurch lässt sich mit Sonnenlicht "grüner" Wasserstoff erzeugen, eine attraktive Option, um Sonnenenergie zu speichern. Metalloxid-Dünnschicht-Photoelektroden sind besonders interessant. Sie bestehen aus reichlich vorhandenen Elementen, die sich potenziell unbegrenzt variieren lassen, um die gewünschten Eigenschaften zu erreichen - und das zu vergleichsweise geringen Kosten.

Herstellung aus Plasma

Am HZB-Institut für Solare Brennstoffe beschäftigen sich mehrere Teams mit der Entwicklung solcher Photoelektroden. Die übliche Methode, um sie herzustellen, ist die gepulste Laserdeposition: Ein intensiver Laserpuls trifft auf ein Target, das das Material enthält, und trägt es als hochenergetisches Plasma auf einem Substrat ab.

Das Dilemma bei Ofenhitze

Weitere Schritte sind jedoch erforderlich, um die Qualität der abgeschiedenen Dünnschicht zu verbessern. So verringert eine thermische Behandlung der Metalloxid-Dünnschicht Defekte und Unvollkommenheiten. Dies führt jedoch zu einem Dilemma: Denn um die Konzentration atomarer Defekte wirklich zu senken und die kristalline Ordnung der Metalloxid-Dünnschichten zu verbessern, müssten Temperaturen zwischen 850 und 1000 Grad Celsius erreicht werden - das Glassubstrat schmilzt jedoch bereits bei 550 Grad Celsius.

Blitzschnelle Lösung

Dr. Ronen Gottesman vom HZB-Institut für Solare Brennstoffe hat dieses Problem nun gelöst: Nach der Abscheidung heizt er die Metalloxid-Dünnschicht mit Hochleistungslampen blitzartig auf. Dabei wird die Dünnschicht auf 850 Grad Celsius erhitzt, ohne das darunter liegende Glassubstrat zu schmelzen.

"Die Hitze reduziert effizient strukturelle Defekte, Fallenzustände, Korngrenzen und Phasenverunreinigungen", sagt Gottesman. "Wir haben dies nun an Photoelektroden aus Ta2O5, TiO2 und WO3 demonstriert, die wir auf 850 °C erhitzt haben, ohne die Substrate zu beschädigen", sagt Gottesman.

Neuer Rekordwert für α-SnWO4

Die neue Methode war auch bei einem Photoelektrodenmaterial erfolgreich, das als sehr guter Kandidat für die solare Wasserspaltung gilt: α-SnWO4. Die herkömmliche thermische Behandlung im Ofen hinterlässt Phasenverunreinigungen. Das Erhitzen mit dem Rapid Thermal Processing (RTP) verbesserte die Kristallinität, die elektronischen Eigenschaften und führte zu einer neuen Rekordleistung von 1 mA/cm2 für dieses Material -  25 % über dem bisherigen Rekord.

"Dies ist auch für die Herstellung von Quantenpunkten oder Halogenidperowskiten interessant, die ebenfalls temperaturempfindlich sind", erklärt Gottesman.

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.
  • Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
    Interview
    21.08.2025
    Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
    Im Juni und Juli 2025 verbrachte der Katalyseforscher Nico Fischer Zeit am HZB. Es war sein „Sabbatical“, für einige Monate war er von seinen Pflichten als Direktor des Katalyse-Instituts in Cape Town entbunden und konnte sich nur der Forschung widmen. Mit dem HZB arbeitet sein Institut an zwei Projekten, die mit Hilfe von neuartigen Katalysatortechnologien umweltfreundliche Alternativen erschließen sollen. Mit ihm sprach Antonia Rötger.