Perowskit-Solarzellen: Mögliche Ursache für hohe Wirkungsgrade aufgedeckt

Die Zeichnung verdeutlicht, wie das organische Methylammoniumion (CH<sub>3</sub>NH<sub>3</sub><sup>+</sup>) mit den Jodid-Ionen wechselwirkt. Durch die Verschiebung der Jod-Atome aus der gemeinsamen Ebene mit Blei geht das Symmetriezentrum verloren.

Die Zeichnung verdeutlicht, wie das organische Methylammoniumion (CH3NH3+) mit den Jodid-Ionen wechselwirkt. Durch die Verschiebung der Jod-Atome aus der gemeinsamen Ebene mit Blei geht das Symmetriezentrum verloren. © HZB

Ein HZB-Team hat durch kristallographische Analysen an der Synchrotronquelle Diamond Light Source (DLS) in Großbritannien erstmals nachgewiesen, dass Hybrid-Perowskite ohne Inversions-Zentren auskristallisieren. Durch Wechselwirkungen zwischen den organischen Molekülen und benachbarten Jod-Atomen können sich so ferroelektrische Domänen bilden, die über weitere Effekte höhere Wirkungsgrade in Solarzellen ermöglichen. In anorganischen Perowskiten kann diese ferroelektrische Domänenbildung nicht stattfinden.

Solarzellen auf Basis von Perowskiten haben in nur wenigen Jahren enorm hohe Wirkungsgrade erreicht. Dabei zeichnen sich Solarzellen mit Hybrid-Perowskiten, die aus anorganischen wie organischen Komponenten bestehen, durch besonders hohe Wirkungsgrade aus, sind allerdings bislang noch nicht langzeitstabil. Anorganische Perowskit-Halbleiter wie CsPbI3 sind zwar weniger effizient, gelten jedoch aufgrund ihrer höheren Stabilität ebenfalls als interessante Materialien für die Photovoltaik.

Schwierige Strukturanalyse

Bisher ging man davon aus, dass sich hybride und anorganische Perowskite im kristallinen Aufbau nicht grundsätzlich unterscheiden. Bei der Herstellung von Perowskit-Materialien bildet sich jedoch in der Regel nicht ein einziger großer Kristall, sondern unzählige winzige Zwillingskristalle. Dies macht die Analyse der Kristallstruktur kompliziert und fehleranfällig.

Kristalle von MAPbI3 untersucht

Nun ist einem HZB-Team um Prof. Dr. Susan Schorr und Dr. Joachim Breternitz ein Durchbruch im Verständnis der kristallinen Struktur von hybriden Perowskiten gelungen. Das HZB-Team untersuchte kristalline Proben von MAPbI3, dem prominentesten Vertreter dieser Materialien. Die Analysen fanden an der Synchrotronquelle Diamond Light Source (DLS) in Großbritannien statt.

Ferroelektrische Domänen?

Dabei konnten sie auch klären, ob überhaupt ferroelektrische Effekte in diesem hybriden Perowskitmaterial möglich sind. Ferroelektrische Domänen können in Solarzellen günstige Auswirkungen haben und den Wirkungsgrad steigern. Messungen dieses Effekts an Proben sind jedoch schwierig – ein Nullergebnis kann entweder bedeuten, dass es keinen ferroelektrischen Effekt gibt, oder dass sich die ferroelektrischen Domänen gegenseitig aufheben.

Kein Inversionszentrum in MAPbI3

„Aus kristallographischer Sicht gibt es einige notwendige Bedingungen für Ferroelektrizität: Ein ferroelektrischer Effekt kann nur dann auftreten, wenn die Kristallstruktur kein Inversionszentrum enthält und zusätzlich ein permanentes polares Moment aufweist“ erklärt Breternitz.

Bislang ging man davon aus, dass die Kristallstruktur von MAPbI3 ein Inversionszentrum enthält. Dies ist jedoch nicht der Fall, zeigen die Ergebnisse der Kristallstrukturanalyse: „Dabei spielt das organische Kation MA+ eine tragende Rolle“, erklärt Breternitz. Denn das MA-Molekül ist nicht kugelsymmetrisch und auch deutlich größer als ein einzelnes Atom, sodass es mit den benachbarten Jod-Atomen ein polares Moment erzeugt.

Unterschiede zu anorganischen Perowskiten

Damit sind ferroelektrische Domänen in MAPbI3 möglich. Bei anorganischen Perowskiten, in denen anstelle des MA-Moleküls ein Alkali-Atom eingebaut ist, greift dieser Mechanismus nicht. Damit sind möglicherweise die stabileren anorganischen Perowskite grundsätzlich etwas begrenzter in ihrem Wirkungsgrad als ihre hybriden Verwandten.

Die Studie ist in Angewandte Chemie (2019) publiziert: “Role of the Iodide–Methylammonium Interaction in the Ferroelectricity of CH3NH3PbI3”. J. Breternitz, F. Lehmann, S. A. Barnett, H. Nowell, S. Schorr

DOI: 10.1002/anie.201910599

arö


Das könnte Sie auch interessieren

  • Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Science Highlight
    17.07.2024
    Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Die besonderen Eigenschaften von magnetischen Materialien aus der Gruppe der Seltenen Erden gehen auf Elektronen in der 4f-Schale zurück. Bislang galten die magnetischen Eigenschaften der 4f-Elektronen als kaum kontrollierbar. Nun hat ein Team von HZB, der Freien Universität Berlin und weiteren Einrichtungen erstmals gezeigt, dass durch Laserpulse 4f-Elektronen beeinflusst – und damit deren magnetische Eigenschaften verändert werden können. Die Entdeckung, die durch Experimente am EuXFEL und FLASH gelang, weist einen neuen Weg zu Datenspeichern mit Seltenen Erden.
  • BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Science Highlight
    09.07.2024
    BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Feststoffbatterien können mehr Energie speichern und sind sicherer als Batterien mit flüssigen Elektrolyten. Allerdings halten sie nicht so lange und ihre Kapazität nimmt mit jedem Ladezyklus ab. Doch das muss nicht so bleiben: Forscherinnen und Forscher sind den Ursachen bereits auf der Spur. In der Fachzeitschrift ACS Energy Letters stellt ein Team des HZB und der Justus-Liebig-Universität Gießen eine neue Methode vor, um elektrochemische Reaktionen während des Betriebs einer Feststoffbatterie mit Photoelektronenspektroskopie an BESSY II genau zu verfolgen. Die Ergebnisse helfen, Batteriematerialien und -design zu verbessern.

  • Wertstoffe aus Abfall: Auf die richtigen Elektrolyte kommt es an
    Science Highlight
    01.07.2024
    Wertstoffe aus Abfall: Auf die richtigen Elektrolyte kommt es an
    Stellt man aus Biomasse Biodiesel her, fällt als Nebenprodukt Glycerin an. Bislang wird dieses Nebenprodukt jedoch wenig genutzt, obwohl es durch Oxidation in photoelektrochemischen Reaktoren (PEC) zu wertvolleren Chemikalien verarbeitet werden könnte. Der Grund dafür: geringe Effizienz und Selektivität. Nun hat ein Team um Dr. Marco Favaro vom Institut für Solare Brennstoffe am HZB den Einfluss der Elektrolyte auf die Effizienz der Glycerin-Oxidations-Reaktion in PEC-Reaktoren untersucht und Ergebnisse erhalten, die dabei helfen, effizientere und umweltfreundlichere Produktionsverfahren zu entwickeln.