Energieeffiziente IT: Neuer Schaltprozess in spintronischen Bauelementen beobachtet

Ein magnetisches Feld wird kurz angelegt und erzeugt zwei Domänenwände, die sich nach Abschalten des äußeren Felds aufeinander zu bewegen und vernichten. Nach 58 Nanosekunden ist die Magnetisierung im Nanoring umgedreht.

Ein magnetisches Feld wird kurz angelegt und erzeugt zwei Domänenwände, die sich nach Abschalten des äußeren Felds aufeinander zu bewegen und vernichten. Nach 58 Nanosekunden ist die Magnetisierung im Nanoring umgedreht. © HZB

Klicken Sie auf<strong> <a href="http://www.helmholtz-berlin.de/media/media/oea/aktuell/news/animierte-gifs/automotion-mam.gif">diesen Link</a>, </strong>um<strong> </strong>die Bewegung der beiden Dom&auml;nenw&auml;nde im Video zu sehen.

Klicken Sie auf diesen Link, um die Bewegung der beiden Domänenwände im Video zu sehen. © HZB

Ein Forscherteam aus Berlin, Stuttgart und Mainz hat in einem ferromagnetischen Material einen neuartigen magnetischen Schaltprozess beobachtet, der sehr schnell abläuft und kaum Energieaufwand erfordert. Voraussetzung ist, dass das Material aus ringförmigen Nanostrukturen besteht. Solche Strukturen könnten ein Weg zu energiesparenden neuen Datenspeichern sein. Die Ergebnisse sind als "Highlight" in Physical Review Applied veröffentlicht.

Magnetische Datenspeicher basieren stets auf Bauelementen mit zwei stabilen magnetischen Zuständen, zwischen denen sich hin- und herschalten lässt. Gute Kandidaten für solche Bauelemente sind ringförmige Strukturen aus einem permanentmagnetischen Material mit winzigen Durchmessern von tausendstel Millimetern. Diese Nanoringe können im oder gegen den Uhrzeigersinn magnetisiert sein. Allerdings gelingt das Umschalten zwischen den beiden Zuständen bisher nur, wenn ein komplexes zirkular magnetisches Feld anliegt.

Nanoringe lassen sich leicht umschalten

Wie es leichter gehen könnte, hat nun ein Team von Wissenschaftlerinnen und Wissenschaftlern aus verschiedenen Forschungseinrichtungen in Deutschland gezeigt: Wird das Loch im Ring nicht mittig, sondern leicht asymmetrisch angeordnet, so dass der Ring an einer Seite dünner ist als an der anderen, dann wird das Umschalten ganz einfach!  Ein magnetisches Feld, das nur wenige Milliardstel Sekunden lang stabil sein muss, genügt, um die Magnetisierung vom Uhrzeigersinn in den Gegenuhrzeigersinn zu drehen.

Ein kurzzeitiges Magnetfeld reicht aus

An der Maxymus-Beamline von BESSY II konnte das Team mit Hilfe von zeitaufgelöster Röntgen-Mikroskopie beobachten, wie sich die Magnetisierung  entwickelt, nachdem der kurze Magnetfeldpuls angelegt wurde: So bilden sich durch den magnetischen Puls zunächst zwei Domänenwände im Ring aus. Sobald das äußere magnetische Feld abgeschaltet wird, bewegen sich die Domänenwände sehr schnell aufeinander zu und vernichten sich. Dadurch dreht sich die Magnetisierung vom Uhrzeigersinn in die Gegenrichtung um.

Schneller Prozess für Spintronik

“Unsere Messungen zeigen, dass sich die Domänenwände im Durchschnitt 60 Meter pro Sekunde bewegen. Dies ist sehr schnell für spintronische Anwendungen”, sagt Dr. Mohamad-Assaad Mawass, Erstautor der Publikation in Physical Review Applied. Mawass hat an diesen Experimenten bereits im Rahmen seiner Doktorarbeit an der Johannes Gutenberg Universität Mainz (Gruppe von Prof. Kläui) gemeinsam mit der Gruppe um Gisela Schütz vom Max Planck Institut für Intelligente Systeme, Stuttgart, gearbeitet. Nun konnte er diese Forschung als Postdoc an der X-PEEM-Beamline am HZB fortsetzen.  “Wir sind davon überzeugt, dass wir einen robusten, zuverlässigen Umschaltprozess  gefunden haben, der sich für Anwendungen in der Spintronik, zum Beispiel für die energieeffiziente Datenspeicherung eignet”, sagt Mawass.

Die Ergebnisse sind nun in Physical Review Applied veröffentlicht, die Arbeit wurde von den Herausgebern besonders hervorgehoben (Editors' Suggestion).

Zur Publikation in Physical Review Applied (2017): "Switching by domain wall automotion in asymmetric ferromagnetic rings”, Mohamad-Assaad Mawass, Kornel Richter, Andre Bisig, Robert M. Reeve, Benjamin Krüger, Markus Weigand, Andrea Krone, Hermann Stoll, Florian Kronast, Gisela Schütz, and Mathias Kläui


DOI: 10.1103/PhysRevApplied.7.044009

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Was die Zinkkonzentration in Zähnen verrät
    Science Highlight
    19.02.2026
    Was die Zinkkonzentration in Zähnen verrät
    Zähne sind Verbundstrukturen aus Mineralien und Proteinen, dabei besteht der Großteil des Zahns aus Dentin, einem knochenartigen, hochporösen Material. Diese Struktur macht Zähne sowohl stark als auch empfindlich. Neben Kalzium und Phosphat enthalten Zähne auch Spurenelemente wie Zink. Mit komplementären mikroskopischen Verfahren hat ein Team der Charité Berlin, der TU Berlin und des HZB die Verteilung von natürlichem Zink im Zahn ermittelt. Das Ergebnis: mit zunehmender Porosität des Dentins in Richtung Pulpa steigt die Zinkkonzentration um das 5- bis 10-fache. Diese Erkenntnis hilft, den Einfluss von zinkhaltigen Füllungen auf die Zahngesundheit besser zu verstehen und könnte Verbesserungen in der Zahnmedizin anstoßen.
  • Faszinierendes Fundstück wird zu wertvoller Wissensquelle
    Nachricht
    12.02.2026
    Faszinierendes Fundstück wird zu wertvoller Wissensquelle
    Das Bayerische Landesamt für Denkmalpflege (BLfD) hat ein besonderes Fundstück aus der mittleren Bronzezeit nach Berlin geschickt, um es mit modernsten Methoden zerstörungsfrei zu untersuchen: Es handelt sich um ein mehr als 3400 Jahre altes Bronzeschwert, das 2023 im schwäbischen Nördlingen bei archäologischen Grabungen zutage trat. Die Expertinnen und Experten konnten herausfinden, wie Griff und Klinge miteinander verbunden sind und wie die seltenen und gut erhaltenen Verzierungen am Knauf angefertigt wurden – und sich so den Handwerkstechniken im Süddeutschland der Bronzezeit annähern. Zum Einsatz kamen eine 3D-Computertomographie und Röntgendiffraktion zur Eigenspannungsanalyse am Helmholtz-Zentrum Berlin (HZB) sowie die Röntgenfluoreszenz-Spektroskopie bei einem von der Bundesanstalt für Materialforschung und -prüfung (BAM) betreuten Strahlrohr an BESSY II.
  • Topologische Überraschungen beim Element Kobalt
    Science Highlight
    11.02.2026
    Topologische Überraschungen beim Element Kobalt
    Das Element Kobalt gilt als typischer Ferromagnet ohne weitere Geheimnisse. Ein internationales Team unter der Leitung von Dr. Jaime Sánchez-Barriga (HZB) hat nun jedoch komplexe topologische Merkmale in der elektronischen Struktur von Kobalt entdeckt. Spin-aufgelöste Messungen der Bandstruktur (Spin-ARPES) an BESSY II zeigten verschränkte Energiebänder, die sich selbst bei Raumtemperatur entlang ausgedehnter Pfade in bestimmten kristallographischen Richtungen kreuzen. Dadurch kann Kobalt als hochgradig abstimmbare und unerwartet reichhaltige topologische Plattform verstanden werden. Dies eröffnet Perspektiven, um magnetische topologische Zustände in Kobalt für künftige Informationstechnologien zu nutzen.