Energieeffiziente IT: Neuer Schaltprozess in spintronischen Bauelementen beobachtet

Ein magnetisches Feld wird kurz angelegt und erzeugt zwei Domänenwände, die sich nach Abschalten des äußeren Felds aufeinander zu bewegen und vernichten. Nach 58 Nanosekunden ist die Magnetisierung im Nanoring umgedreht.

Ein magnetisches Feld wird kurz angelegt und erzeugt zwei Domänenwände, die sich nach Abschalten des äußeren Felds aufeinander zu bewegen und vernichten. Nach 58 Nanosekunden ist die Magnetisierung im Nanoring umgedreht. © HZB

Klicken Sie auf<strong> <a href="http://www.helmholtz-berlin.de/media/media/oea/aktuell/news/animierte-gifs/automotion-mam.gif">diesen Link</a>, </strong>um<strong> </strong>die Bewegung der beiden Dom&auml;nenw&auml;nde im Video zu sehen.

Klicken Sie auf diesen Link, um die Bewegung der beiden Domänenwände im Video zu sehen. © HZB

Ein Forscherteam aus Berlin, Stuttgart und Mainz hat in einem ferromagnetischen Material einen neuartigen magnetischen Schaltprozess beobachtet, der sehr schnell abläuft und kaum Energieaufwand erfordert. Voraussetzung ist, dass das Material aus ringförmigen Nanostrukturen besteht. Solche Strukturen könnten ein Weg zu energiesparenden neuen Datenspeichern sein. Die Ergebnisse sind als "Highlight" in Physical Review Applied veröffentlicht.

Magnetische Datenspeicher basieren stets auf Bauelementen mit zwei stabilen magnetischen Zuständen, zwischen denen sich hin- und herschalten lässt. Gute Kandidaten für solche Bauelemente sind ringförmige Strukturen aus einem permanentmagnetischen Material mit winzigen Durchmessern von tausendstel Millimetern. Diese Nanoringe können im oder gegen den Uhrzeigersinn magnetisiert sein. Allerdings gelingt das Umschalten zwischen den beiden Zuständen bisher nur, wenn ein komplexes zirkular magnetisches Feld anliegt.

Nanoringe lassen sich leicht umschalten

Wie es leichter gehen könnte, hat nun ein Team von Wissenschaftlerinnen und Wissenschaftlern aus verschiedenen Forschungseinrichtungen in Deutschland gezeigt: Wird das Loch im Ring nicht mittig, sondern leicht asymmetrisch angeordnet, so dass der Ring an einer Seite dünner ist als an der anderen, dann wird das Umschalten ganz einfach!  Ein magnetisches Feld, das nur wenige Milliardstel Sekunden lang stabil sein muss, genügt, um die Magnetisierung vom Uhrzeigersinn in den Gegenuhrzeigersinn zu drehen.

Ein kurzzeitiges Magnetfeld reicht aus

An der Maxymus-Beamline von BESSY II konnte das Team mit Hilfe von zeitaufgelöster Röntgen-Mikroskopie beobachten, wie sich die Magnetisierung  entwickelt, nachdem der kurze Magnetfeldpuls angelegt wurde: So bilden sich durch den magnetischen Puls zunächst zwei Domänenwände im Ring aus. Sobald das äußere magnetische Feld abgeschaltet wird, bewegen sich die Domänenwände sehr schnell aufeinander zu und vernichten sich. Dadurch dreht sich die Magnetisierung vom Uhrzeigersinn in die Gegenrichtung um.

Schneller Prozess für Spintronik

“Unsere Messungen zeigen, dass sich die Domänenwände im Durchschnitt 60 Meter pro Sekunde bewegen. Dies ist sehr schnell für spintronische Anwendungen”, sagt Dr. Mohamad-Assaad Mawass, Erstautor der Publikation in Physical Review Applied. Mawass hat an diesen Experimenten bereits im Rahmen seiner Doktorarbeit an der Johannes Gutenberg Universität Mainz (Gruppe von Prof. Kläui) gemeinsam mit der Gruppe um Gisela Schütz vom Max Planck Institut für Intelligente Systeme, Stuttgart, gearbeitet. Nun konnte er diese Forschung als Postdoc an der X-PEEM-Beamline am HZB fortsetzen.  “Wir sind davon überzeugt, dass wir einen robusten, zuverlässigen Umschaltprozess  gefunden haben, der sich für Anwendungen in der Spintronik, zum Beispiel für die energieeffiziente Datenspeicherung eignet”, sagt Mawass.

Die Ergebnisse sind nun in Physical Review Applied veröffentlicht, die Arbeit wurde von den Herausgebern besonders hervorgehoben (Editors' Suggestion).

Zur Publikation in Physical Review Applied (2017): "Switching by domain wall automotion in asymmetric ferromagnetic rings”, Mohamad-Assaad Mawass, Kornel Richter, Andre Bisig, Robert M. Reeve, Benjamin Krüger, Markus Weigand, Andrea Krone, Hermann Stoll, Florian Kronast, Gisela Schütz, and Mathias Kläui


DOI: 10.1103/PhysRevApplied.7.044009

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Science Highlight
    27.03.2025
    Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.
  • BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Science Highlight
    25.03.2025
    BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Eine blütenförmige Struktur aus einer Nickel-Eisen-Legierung, die nur wenige Mikrometer misst, kann Magnetfelder lokal verstärken. Der Effekt lässt sich durch die Geometrie und Anzahl der „Blütenblätter“ steuern. Das magnetische Metamaterial wurde von der Gruppe um Dr. Anna Palau am Institut de Ciencia de Materials de Barcelona (ICMAB) mit Partnern aus dem CHIST-ERA MetaMagIC-Projekts entwickelt und nun an BESSY II in Zusammenarbeit mit Dr. Sergio Valencia untersucht. Die Mikroblüten ermöglichen vielfältige Anwendungen: Sie können die Empfindlichkeit magnetischer Sensoren erhöhen, die Energie für die Erzeugung lokaler Magnetfelder reduzieren, und am PEEM-Messplatz an BESSY II die Messung von Proben unter deutlich höheren Magnetfeldern ermöglichen.
  • Innovative Batterie-Elektrode aus Zinn-Schaum
    Science Highlight
    24.02.2025
    Innovative Batterie-Elektrode aus Zinn-Schaum
    Metallbasierte Elektroden in Lithium-Ionen-Akkus versprechen deutlich höhere Kapazitäten als konventionelle Graphit-Elektroden. Leider degradieren sie aufgrund von mechanischen Beanspruchungen während der Lade- und Entladezyklen. Nun zeigt ein Team am HZB, dass ein hochporöser Schaum aus Zinn den mechanischen Stress während der Ladezyklen deutlich besser abfedern kann. Das macht Zinn-Schäume als potentielles Material für Lithium-Batterien interessant.