Tintendruck-Verfahren für Kesterit-Solarzellen

Die Zeichnung skizziert das Tintendruck-Verfahren für eine Kesterit-Schicht.

Die Zeichnung skizziert das Tintendruck-Verfahren für eine Kesterit-Schicht. © HZB

Querschnitt mit dem Rasterelektronenmikroskop durch eine gedruckte Kesterit-Solarzelle: auf einem Mo-Substrat befindet sich die aufgedruckte Kesterit-Schicht (CZTSSe).

Querschnitt mit dem Rasterelektronenmikroskop durch eine gedruckte Kesterit-Solarzelle: auf einem Mo-Substrat befindet sich die aufgedruckte Kesterit-Schicht (CZTSSe). © HZB

Ein Team aus dem HZB hat ein neues Verfahren entwickelt, um mit einer speziellen Tinte Kesterit-Absorberschichten (CTZSSe) Tropfen für Tropfen auszudrucken. Solarzellen mit so produzierten Absorberschichten erreichten Wirkungsgrade von 6,4 %. Auch wenn dies noch deutlich unter den Rekordwerten für Kesterit-Solarzellen liegt, ist das Tintendruck-Verfahren interessant für die industrielle Produktion, da es extrem ökonomisch ist und kaum Abfälle erzeugt.

Ein Tintendrucker platziert Material genau dort, wo es benötigt wird. Daher verspricht dieses Verfahren eine deutliche Minimierung der Materialkosten. Zudem lässt sich das Verfahren auch für Rolle-zu-Rolle-Beschichtungen bei der industriellen Massenfertigung nutzen.

Kesterit-Tinte für das Aufschleuderverfahren verbessert

Dr. Xianzhong Lin vom Institut für Heterogene Materialsysteme des HZB hat nun mit einer Kesterit-Tinte gearbeitet, die ursprünglich entwickelt wurde, um auf ein rotierendes Substrat aufgeschleudert und verteilt zu werden. Dieses so genannte „Spin coating“ ist ein etabliertes Verfahren, bei dem allerdings ein erheblicher Teil der wertvollen Ausgangsmaterialien verschwendet wird. Lin optimierte die Kesterit-Tinte nun für ein am HZB entwickeltes Tintendruck-Verfahren. Dabei gelang es ihm, die Viskosität der Tinte gezielt zu beeinflussen, bis sie perfekt zum Produktionsverfahren passte, bei dem der Tintendruckkopf schrittweise über das Substrat geführt wird. Der so entstandene homogene Cu-Zn-Sn-S Vorläuferfilm wurde anschließend zu einer homogenen Kesterit-Schicht verbacken. Schon eine erste Optimierung führte zu Solarzellen mit Wirkungsgraden um 6,4 %. 

Ökonomisch und umweltfreundlich: Kaum Abfall

„Der große Vorteil des Tintendruckverfahrens besteht darin, dass vergleichsweise wenig Material verloren geht:  So sind weniger als 20 Mikroliter Tinte nötig, um eine Fläche von rund 6,5 Quadratzentimetern mit einer Kesterit-Schicht von einem Mikrometer zu beschichten“, sagt Lin. “Auch wenn der Wirkungsgrad jetzt noch weit von den 12,7% entfernt ist, die Kesterit-Zellen erreichen können, sehen wir in diesem Verfahren enorme Chancen für die industrielle Massenproduktion.”

Das Team arbeitet nun daran, das Verfahren zu optimieren und den Wirkungsgrad zu steigern. Ihr Ziel ist es, komplette Solarzellen auszudrucken, ohne auf teure Vakuum-Technologie angewiesen zu sein. „Die Arbeit zeigt einen neuen Weg, um einfach, preiswert und umweltfreundlich Dünnschicht-Solarzellen auf Kesterit-Basis zu produzieren“, sagt Institutsleiterin Prof. Dr. Martha Lux-Steiner. 

Die Ergebnisse sind nun hier publiziert: X. Lin, J. Kavalakkatt, M. C. Lux-Steiner, A. Ennaoui,  Inkjet-printed Cu2ZnSn(S, Se)4 solar cells, Adv. Sci. 2015.

DOI: 10.1002/advs.201500028

Former results have been published here : X. Lin, J. Kavalakkatt, N. Brusten, M. C. Lux-Steiner, A. Ennaoui, Inkjet printing of Kesterite and Chalcopyrite thin film absorbers for low cost photovoltaic application, in 29th Eur. PV Solar Energy Conf., Vol. 3DV.2.64, Amsterdam 2014, 1876.

LX/arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Science Highlight
    07.11.2025
    Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Perowskit-Solarzellen sind kostengünstig in der Herstellung und liefern viel Leistung pro Fläche. Allerdings sind sie bisher noch nicht stabil genug für den Langzeit-Einsatz. Nun hat ein internationales Team unter der Leitung von Prof. Dr. Antonio Abate durch eine neuartige Beschichtung der Grenzfläche zwischen Perowskitschicht und dem Top-Kontakt die Stabilität drastisch erhöht. Dabei stieg der Wirkungsgrad auf knapp 27 Prozent, was dem aktuellen state-of-the-art entspricht. Dieser hohe Wirkungsgrad nahm auch nach 1.200 Stunden im Dauerbetrieb nicht ab. An der Studie waren Forschungsteams aus China, Italien, der Schweiz und Deutschland beteiligt. Sie wurde in Nature Photonics veröffentlicht.
  • Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Science Highlight
    05.11.2025
    Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Noch immer ist die Hochtemperatursupraleitung nicht vollständig verstanden. Nun hat ein internationales Forschungsteam an BESSY II die Energie von Ladungsträgerpaaren in undotiertem La₂CuO₄ vermessen. Die Messungen zeigten, dass die Wechselwirkungsenergien in den potenziell supraleitenden Kupferoxid-Schichten deutlich geringer sind als in den isolierenden Lanthanoxid-Schichten. Die Ergebnisse tragen zum besseren Verständnis der Hochtemperatur-Supraleitung bei und könnten auch für die Erforschung anderer funktionaler Materialien relevant sein.
  • Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Science Highlight
    31.10.2025
    Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Hybride Elektrokatalysatoren können beispielsweise gleichzeitig grünen Wasserstoff und wertvolle organische Verbindungen produzieren. Dies verspricht wirtschaftlich rentable Anwendungen. Die komplexen katalytischen Reaktionen, die bei der Herstellung organischer Verbindungen ablaufen, sind jedoch noch nicht vollständig verstanden. Moderne Röntgenmethoden an Synchrotronquellen wie BESSY II ermöglichen es, Katalysatormaterialien und die an ihren Oberflächen ablaufenden Reaktionen in Echtzeit, in situ und unter realen Betriebsbedingungen zu analysieren. Dies liefert Erkenntnisse, die für eine gezielte Optimierung genutzt werden können. Ein Team hat nun in Nature Reviews Chemistry einen Überblick über den aktuellen Wissensstand veröffentlicht.