Nachricht aus dem Himmel

Festplatte aus dem Himmel: Der Pallasite Meteorit enth&auml;lt noch Informationen aus dem fr&uuml;hen Solarsystem.<br /><em></em>

Festplatte aus dem Himmel: Der Pallasite Meteorit enthält noch Informationen aus dem frühen Solarsystem.
© Alle Bildrechte liegen beim Natural History Museum, London. Probe verwendet aus der Meteoriten Kollektion des Natural History Museum

Das Team musste mehrere Nachtschichten an BESSY II einlegen:  Claire Nichols, James Bryson, Julia Herrero Albilios and Richard Harrison (von links nach rechts). <br /><em></em>

Das Team musste mehrere Nachtschichten an BESSY II einlegen: Claire Nichols, James Bryson, Julia Herrero Albilios and Richard Harrison (von links nach rechts).
© HZB

Die aktuelle Ausgabe der "Nature" vom 22. Januar zeigt den Meteoriten auf dem Titel.

Die aktuelle Ausgabe der "Nature" vom 22. Januar zeigt den Meteoriten auf dem Titel.

Geologen der Universität Cambridge um Dr. Richard Harrison haben an BESSY II bislang verborgene magnetische Signale in Meteoriten entdeckt. Sie legen Zeugnis ab von Magnetfeldern im Gestein während der frühen Phase des Sonnensystems und ermöglichen vielleicht eine Voraussage zum Schicksal des Erdmagnetfeldes in ferner Zukunft. Das Team um Dr. Richard Harrison hat in Meteoriten winzige Partikel identifiziert, die sich während der frühen Phase des Sonnensystems magnetisch ausgerichtet haben.

Bislang ging die Forschung davon aus, dass Meteoriten keine magnetischen Spuren aus der Frühzeit des Sonnensystems mehr aufweisen, da ihre magnetischen Domänen sich leicht neu ausrichten und daher im Laufe ihrer Geschichte mehrfach überschrieben worden sein dürften. Die magnetische Orientierung der von Harrison entdeckten Nanopartikel ist dagegen extrem stabil. Harrison und sein Team konnten diese „winzigen Weltraummagnete“ mit Hilfe von zirkular polarisiertem Röntgenlicht an BESSY II kartieren. Ihre Ergebnisse sind nun in Nature veröffentlicht, das Bild hat es sogar auf den Titel geschafft.

Meteoriten als natürliche Festplatten

Bevor sie auf die Erde fallen, haben Meteoriten eine lange, bewegte Geschichte hinter sich: Sie sind Bruchstücke von Asteroiden, die vor rund viereinhalb Milliarden Jahren mit dem Sonnensystem entstanden sind. Viele dieser Himmelskörper heizten sich damals durch radioaktiven Zerfall auf. Dadurch entstanden in ihrem Inneren metallische Schmelzen, die durch Konvektion magnetische Felder erzeugten - so wie es heute noch die Erde tut. Im Laufe der Millionen von Jahren, die seitdem vergangen sind, kühlten die Schmelzen in den kleinen Himmelskörpern jedoch ab, so dass die Konvektion zum Erliegen kam.

Die Chance, solche Himmelskörper wissenschaftlich zu untersuchen, ergibt sich, weil Asteroiden gelegentlich zusammenstoßen und zerbrechen. Bruchstücke fallen dann als Meteoriten auf die Erde. „Meteoriten sind wie natürliche Festplatten, sie haben das magnetische Feld aus der Frühzeit des Asteroiden gespeichert“, sagt Dr. Richard Harrison. Der Geologe der Universität Cambridge arbeitet an Methoden, um diese tief im Gestein verborgenen Informationen zu entschlüsseln. Nun kann er erste Ergebnisse vorstellen.

Die Botschaft steckt in der "Wolkenzone"

Bis dahin war es unklar, ob eisenhaltige Meteoriten überhaupt noch magnetische Informationen aus der frühen Phase des Sonnensystems enthalten. Zwar fand man große magnetische Domänen, diese ließen sich aber leicht durch neue Magnetfelder überschreiben. Die Wahrscheinlichkeit dafür, dass diese Regionen noch nützliche Informationen über die frühen Magnetfelder des Sonnensystems enthalten, galt daher als extrem gering.

Harrison schaute jedoch genauer hin: An der PEEM-Beamline von BESSY II am Helmholtz-Zentrum Berlin fanden er und sein Doktorand James Bryson bemerkenswerte Variationen in den magnetischen Eigenschaften. Sie beobachteten nicht nur Regionen mit größeren magnetischen Domänen, die beweglich waren, sondern identifizierten auch eine ungewöhnliche Region, die so genannte Wolkenzone. Sie bestand aus tausenden winziger Nanopartikeln aus Tetrataenit, einem superharten magnetischen Material.

Tetrataenit-Partikel zeigen frühe Magnetfelder

“Diese Partikel mit Durchmessern von 50 bis 100 Nanometern besitzen eine magnetische Orientierung, die sich überhaupt nicht verändert. Die Magnetisierung erscheint auf den ersten Blick chaotisch, aber genau hier können wir Informationen über die früher vorherrschenden Magnetfelder finden“, erklärt Bryson.

Spezielle Messoptionen an BESSY II

Die PEEM-Beamline bietet Röntgenlicht mit exakt definierter Energie, welches zudem zirkular polarisiert ist. Diese spezielle Experimentanordnung ermöglicht es, die sehr schwachen magnetischen Signale präzise zu messen und mit hoher Auflösung zu kartieren – und zwar ohne sie durch die Messung zu verändern.
 
“Die neue Technik, die wir entwickelt haben, bietet einen Weg, um aus diesen Bildern echte Informationen zu gewinnen. Nun können wir erstmals paläomagnetische Messungen von sehr kleinen Regionen dieser Himmelsgesteine durchführen und zwar mit der besten Auflösung, die jemals erreicht wurde“, sagt Harrison.

Geschichte der magnetischen Aktivitätentschlüsselt

Dem Team um Harrison gelang es, aus der räumlichen Variation der magnetischen Signale in der Wolkenzone die Geschichte der magnetischen Aktivität des „Muttergesteins“ – also des Asteroiden, von dem der Meteorit einst stammte – zu rekonstruieren. Sie konnten sogar bestimmen, wann sich die metallische Schmelze im Inneren des Asteroiden verfestigte und die Konvektion stoppte.

Ausblick auf die Zukunft des Erdmagnetfelds

Die neuen Messungen könnten viele offene Fragen beantworten, die sich zur Lebensdauer und Stabilität von magnetischen Feldern in Himmelskörpern stellen. Die Daten, die das Team mit Hilfe von Computersimulationen interpretiert, weisen darauf hin, dass das Magnetfeld eher durch Überlagerung von Konvektionsströmen als durch rein thermische Strömungen erzeugt wurde. Solche Ergebnisse ermöglichen vielleicht auch eine Vorschau auf das Schicksal des Erdmagnetfelds in ferner Zukunft, wenn die Konvektion im Inneren der Erde zum Erliegen kommt.

'Long-lived magnetism from solidification-driven convection on the pallasite parent body', Nature on 22 January 2015.

Anmerkung:
Dr. Harrison twittert unter: @NanoPaleoMag

Doktorandin Claire Nichols bloggt: http://tinyspacemagnets.blogspot.de/

Hier auf Soundcloud finden Sie ein kurzes Audio-Interview mit dem Team über ihre Art, Wissenschaft zu kommunizieren, über Twitter und Blogs.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Perowskit-Forschung: Hybridmaterialien als hochempfindliche Röntgendetektoren
    Science Highlight
    08.05.2025
    Perowskit-Forschung: Hybridmaterialien als hochempfindliche Röntgendetektoren
    Neue organisch-anorganische Hybridmaterialien auf Basis von Wismut sind hervorragend als Röntgendetektoren geeignet, sie sind deutlich empfindlicher als handelsübliche Röntgendetektoren und langzeitstabil. Darüber hinaus können sie ohne Lösungsmittel durch Kugelmahlen hergestellt werden, einem umweltfreundlichen Syntheseverfahren, das auch in der Industrie genutzt wird. Empfindlichere Detektoren würden die Strahlenbelastung bei Röntgenuntersuchungen erheblich reduzieren.

  • Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Nachricht
    07.05.2025
    Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Die Bundesanstalt für Materialforschung und -prüfung (BAM), das Helmholtz-Zentrum Berlin (HZB) und die Humboldt-Universität zu Berlin (HU Berlin) haben ein Memorandum of Understanding (MoU) zur Gründung des Berlin Battery Lab unterzeichnet. Das Labor wird die Expertise der drei Institutionen bündeln, um die Entwicklung nachhaltiger Batterietechnologien voranzutreiben. Die gemeinsame Forschungsinfrastruktur soll auch der Industrie für wegweisende Projekte in diesem Bereich offenstehen.
  • BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Einem internationalen Team ist es an BESSY II erstmals gelungen, einen besonders schnellen Prozess im Inneren eines magnetischen Schichtsystems, eines Spinventils, aufzuklären: An der Femtoslicing-Beamline von BESSY II konnten sie die ultraschnelle Entmagnetisierung durch spinpolarisierte Stromimpulse beobachten. Die Ergebnisse helfen bei der Entwicklung von spintronischen Bauelementen für die schnellere und energieeffizientere Verarbeitung und Speicherung von Information. An der Zusammenarbeit waren Teams der Universität Straßburg, des HZB, der Universität Uppsala sowie weiterer Universitäten beteiligt.