Guidi, T.; Gillon, B.; Mason, S.A.; Garlatti, E.; Carretta, S.; Santini, P.; Stunault, A.; Caciuffo, R.; van Slageren, J.; Klemke, B.; Cousson, A.; Timco, G.A.; Winpenny, R.E.P.: Direct observation of finite size effects in chains of antiferromagnetically coupled spins. Nature Communications 6 (2015), p. 7061/1-6
10.1038/ncomms8061
Open Access Version
Abstract:
Finite spin chains made of few magnetic ions are the ultimate-size structures that can be engineered to perform spin manipulations for quantum information devices. Their spin structure is expected to show finite size effects and its knowledge is of great importance both for fundamental physics and applications. Until now a direct and quantitative measurement of the spatial distribution of the magnetization of such small structures has not been achieved even with the most advanced microscopic techniques. Here we present measurements of the spin density distribution of a finite chain of eight spin-3/2 ions using polarized neutron diffraction. The data reveal edge effects that are a consequence of the finite size and of the parity of the chain and indicate a noncollinear spin arrangement. This is in contrast with the uniform spin distribution observed in the parent closed chain and the collinear arrangement in odd-open chains.