• Peredkov, S.; Pereira, N.; Grötzsch, D.; Hendel, S.; Wallacher, D.; DeBeer, S.: PINK: a tender X-ray beamline for X-ray emission spectroscopy. Journal of Synchrotron Radiation 31 (2024), p. 622-634

10.1107/s1600577524002200
Open Access Version

Abstract:
A high-flux beamline optimized for non-resonant X-ray emission spectroscopy (XES) in the tender X-ray energy range has been constructed at the BESSY II synchrotron source. The beamline utilizes a cryogenically cooled undulator that provides X-rays over the energy range 2.1 keV to 9.5 keV. This energy range provides access to XES [and in the future X-ray absorption spectroscopy (XAS)] studies of transition metals ranging from Ti to Cu (Kα, Kβ lines) and Zr to Ag (Lα, Lβ), as well as light elements including P, S, Cl, K and Ca (Kα, Kβ). The beamline can be operated in two modes. In PINK mode, a multilayer monochromator (E/ΔE ≃ 30–80) provides a high photon flux (1014 photons s−1 at 6 keV and 300 mA ring current), allowing non-resonant XES measurements of dilute substances. This mode is currently available for general user operation. X-ray absorption near-edge structure and resonant XAS techniques will be available after the second stage of the PINK commissioning, when a high monochromatic mode (E/ΔE ≃ 10000–40000) will be facilitated by a double-crystal monochromator. At present, the beamline incorporates two von Hamos spectrometers, enabling time-resolved XES experiments with time scales down to 0.1 s and the possibility of two-color XES experiments. This paper describes the optical scheme of the PINK beamline and the endstation. The design of the two von Hamos dispersive spectrometers and sample environment are discussed here in detail. To illustrate, XES spectra of phosphorus complexes, KCl, TiO2 and Co3O4 measured using the PINK setup are presented.