Open Access Version

Abstract:
This thesis focuses on the investigation and characterization of the surfaces and interfaces of chalcopyrite-based Cu(In,Ga)Se2 (CIGSe) thin film solar cells using various x-ray and electron spectroscopies. In particular, the impact of alkali post deposition treatments (PDT) on the chemical and electronic surface and interface structure of CdS/CIGSe absorbers is studied. The structure of “real world” CdS/CIGSe interfaces and how they are impacted by different alkali PDTs was investigated by a combination of different x-ray spectroscopies. The interface formation is characterized by studying sample sets with different CdS thicknesses. The chemical environment for indium and cadmium is revealed by deriving the modified Auger parameter α'(In) and α'(Cd) using the kinetic energy of most prominent Auger line together with the binding energy of the chosen core level. A more complex situation is found for CdS/CIGSe samples that underwent NaF+KF PDT, where a K-In-Se compound is initially present on top of the chalcopyrite absorber. The conversion of the K-In-Se type species into a Cd-In-(O,OH,S,Se) interface compound is recorded at short CBD-CdS deposition times. It appears the majority of K that is present at the surface of the NaF+KF PDT CIGSe absorber is dissolved in the CBD and partially re-deposited as K-O type species. The Cd/S ratio clearly deviates from the stoichiometry expected for CdS, and a Cd(O,OH,S)-like compound is likely formed. The electronic structure of CdS/CIGSe interface is similarly more complex for the NaF+KF PDT compared to the NaF PDT case, where only Cd(O,OH,S) buffer was formed.