TU Berlin ernennt Renske van der Veen zur Professorin

Dr. Renske van der Veen untersucht an BESSY II katalytische Prozesse, die u.a. für die Produktion von grünem Wasserstoff entscheidend sind.

Dr. Renske van der Veen untersucht an BESSY II katalytische Prozesse, die u.a. für die Produktion von grünem Wasserstoff entscheidend sind. © M: Setzpfandt/HZB

Seit zwei Jahren leitet Dr. Renske van der Veen am HZB eine Forschungsgruppe für zeitaufgelöste Röntgenspektroskopie und Elektronenmikroskopie. Im Zentrum ihrer Forschung stehen katalytische Prozesse, die zum Beispiel die Produktion von grünem Wasserstoff ermöglichen. Nun wurde sie zur S-W2 Professorin im Institut für Optik und Atomare Physik (IOAP) an der Technischen Universität Berlin ernannt.

Dr. Renske van der Veen hat sich auf ultraschnelle Röntgenmethoden spezialisiert, die sie an BESSY II einsetzt, um die schnellen Prozesse während der Katalyse zu untersuchen. Ihre Expertise bringt van der Veen auch in das wissenschaftliche Anforderungsprofil für die Nachfolge-Röntgenquelle BESSY III ein.

Renske van der Veen hat an der ETH Zürich studiert und an der École Polytechnique Fédérale de Lausanne (EPFL) promoviert. Im Anschluss forschte sie am California Institute of Technology, dem Max Planck-Institut für Biophysikalische Chemie in Göttingen und der University of Illinois, wo sie auch eine Assistenzprofessur hatte. Sie wurde für ihre Forschung bereits mit dem Sofja Kovalevskaja Award der Alexander von Humboldt-Stiftung und dem Packard Fellowship for Science and Engineering ausgezeichnet.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Ultraschnelle Dissoziation von Molekülen an BESSY II analysiert
    Science Highlight
    02.12.2024
    Ultraschnelle Dissoziation von Molekülen an BESSY II analysiert
    Ein internationales Team hat an BESSY II erstmals beobachtet, wie schwere Moleküle (Bromchlormethan) in kleinere Fragmente zerfallen, wenn sie Röntgenlicht absorbieren. Mit einer neu entwickelten Analysemethode gelang es ihnen, die ultraschnelle Dynamik dieses Prozesses sichtbar zu machen. Dabei lösen die Röntgenphotonen einen „molekularen Katapulteffekt“ aus: Leichte Atomgruppen werden zuerst herausgeschleudert, ähnlich wie Geschosse, die von einem Katapult abgeschossen werden, während die schwereren Atome – Brom und Chlor – sich deutlich langsamer trennen.
  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Science Highlight
    04.11.2024
    BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.