Experiment an BESSY II zeigt, wie der Kompass in magnetisch empfindlichen Bakterien funktioniert

Die magnetischen Nanoteilchen bilden im Innern der Zelle eine Kette, zeigt die Elektronenkryotomographie.

Die magnetischen Nanoteilchen bilden im Innern der Zelle eine Kette, zeigt die Elektronenkryotomographie. © 10.1039/C7NR08493E

Messungen an BESSY II zeigten, wie sich unter einem äußeren Magnetfeld die Kettenglieder ausrichten.

Messungen an BESSY II zeigten, wie sich unter einem äußeren Magnetfeld die Kettenglieder ausrichten. © 10.1039/C7NR08493E

Bakterien sind ungeheuer vielfältig, nicht nur von Gestalt, sondern auch in ihren Eigenschaften. Magnetotaktische Bakterien können mit Hilfe von magnetischen Nanopartikeln das Erdmagnetfeld „spüren“.  Nun hat eine Kooperation aus spanischen Teams und einer Gruppe am Helmholtz-Zentrum Berlin den inneren Kompass in Magnetospirillum gryphiswaldense an der Synchrotronquelle BESSY II untersucht.  Die Ergebnisse können für die Entwicklung von biomedizinischen Anwendungen wie Nanorobotern und Nanosensoren nützlich sein.

Magnetotaktische Bakterien kommen in Gewässern und marinen Sedimenten vor. Magnetospirillum gryphiswaldense gehört zu den Spezies, die sich besonders einfach im Labor zu züchten lassen, und zwar wahlweise mit oder ohne magnetische Nanopartikel im Inneren der Zelle.  „Diese Mikroorganismen sind ideale Testobjekte, um zu verstehen, wie ihr innerer Kompass sich bildet”, erklärt Lourdes Marcano, Doktorandin an der Universidad del Pais Vasco in Leioa, Spanien.

Kette aus Nanoteilchen

Magnetospirillum-Zellen enthalten eine Anzahl von winzigen Magnetit-Teilchen (Fe3O4) mit Durchmessern um die 45 Nanometer. Diese Nanoteilchen, auch Magnetosome genannt, ordnen sich in der Regel zu einer Kette im Innern des Bakteriums an. Diese Kette aus Magnetosomen wirkt als Kompassnadel und richtet sich nach einem äußeren Magnetfeld aus. Dadurch wird auch das Bakterium entlang des Erdmagnetfelds ausgerichtet. „Diese Bakterien existieren mit Vorliebe zwischen sauerstoffreichen und sauerstoffarmen Schichten” sagt Marcano. „Ihr innerer Kompass könnte ihnen helfen, die optimalen Lebensbedingungen zu finden.”

Die spanischen Kooperationspartner untersuchten zunächst die Form der Magnetosomen und ihre Anordnung im Innern der Zelle mit unterschiedlichen Methoden, darunter auch der Elektronenkryotomographie.

Einzelne magnetische Ketten an BESSY II untersucht

An BESSY II untersuchten sie gemeinsam mit dem HZB-Team um Dr. Sergio Valencia isolierte Ketten aus Magnetosomen. Insbesondere wollten sie ermitteln, wie sich die Kette zum magnetischen Feld ausrichtet, das die magnetischen Nanopartikel selbst erzeugen. „Normalerweise benötigt man hunderte von Proben mit unterschiedlich orientierten Magnetosomen-Ketten, um die magnetischen Eigenschaften dieser Bakterien zu charakterisieren“, sagt HZB-Physiker Dr. Sergio Valencia. „Aber an BESSY II können wir mit Hilfe von Photoelektronen-Emissionsmikroskopie (PEEM) und weiteren Methoden die magnetischen Eigenschaften von einzelnen Ketten präzise vermessen.“ Dies eröffnet die Möglichkeit, die Ergebnisse mit theoretischen Vorhersagen zu vergleichen.

Spiralige Form der Ketten

Tatsächlich zeigten die Experimente etwas Überraschendes: Anders als bisher vermutet ist das Magnetfeld der Magnetosomen nicht parallel zur Kette ausgerichtet, sondern leicht schräg dazu. Die theoretische Modellierung der spanischen Partner deutet darauf hin, dass dieser Neigungswinkel dazu führt, dass die Magnetosomenkette eine spiralige Form hat.

Von der Natur lernen

Es sei sehr wichtig, die Mechanismen zu verstehen, die die Form der Kette beeinflussen, betonen die Wissenschaftler. Solche bewährten Erfindungen der Natur könnten als Vorbild und Inspiration dienen. So ließen sich möglicherweise ähnliche Mechanismen für biomedizinische Anwendungen nutzen - zum Beispiel zur Steuerung von Nanorobotern.

Publikation in Nanoscale (2018): “Configuration of the magnetosome chain: a natural magnetic nanoarchitecture”; I. Orue, L. Marcano, P. Bender, A. Garcıa-Prieto, S. Valencia, M.A. Mawass, D. Gil-Carton, D. Alba Venero, D. Honecker, A. Garcıa-Arribas, L. Fernandez Barquın, A. Muela, M.L. Fdez-Gubieda

DOI: 10.1039/C7NR08493E

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    Interview
    12.11.2025
    Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    In diesem Sommer war es in allen Medien. Angetrieben durch die Klimakrise haben nun auch die Ozeane einen kritischen Punkt überschritten, sie versauern immer mehr. Meeresschnecken zeigen bereits erste Schäden, aber die zunehmende Versauerung könnte auch die kalkhaltigen Skelettstrukturen von Korallen beeinträchtigen. Dabei leiden Korallen außerdem unter marinen Hitzewellen und Verschmutzung, die weltweit zur Korallenbleiche und zum Absterben ganzer Riffe führen. Wie genau wirkt sich die Versauerung auf die Skelettbildung aus?

    Die Meeresbiologin Prof. Dr. Tali Mass von der Universität Haifa, Israel, ist Expertin für Steinkorallen. Zusammen mit Prof. Dr. Paul Zaslansky, Experte für Röntgenbildgebung an der Charité Berlin, untersuchte sie an BESSY II die Skelettbildung bei Babykorallen, die unter verschiedenen pH-Bedingungen aufgezogen wurden. Antonia Rötger befragte die beiden Experten online zu ihrer aktuellen Studie und der Zukunft der Korallenriffe. 

  • Susanne Nies in EU-Beratergruppe zu Green Deal berufen
    Nachricht
    12.11.2025
    Susanne Nies in EU-Beratergruppe zu Green Deal berufen
    Dr. Susanne Nies leitet am HZB das Projekt Green Deal Ukraina, das den Aufbau eines nachhaltigen Energiesystems in der Ukraine unterstützt. Die Energieexpertin wurde nun auch in die wissenschaftliche Beratergruppe der Europäischen Kommission berufen, um im Zusammenhang mit der Netto-Null-Zielsetzung (DG GROW) regulatorische Belastungen aufzuzeigen und dazu zu beraten.
  • Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Science Highlight
    07.11.2025
    Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Perowskit-Solarzellen sind kostengünstig in der Herstellung und liefern viel Leistung pro Fläche. Allerdings sind sie bisher noch nicht stabil genug für den Langzeit-Einsatz. Nun hat ein internationales Team unter der Leitung von Prof. Dr. Antonio Abate durch eine neuartige Beschichtung der Grenzfläche zwischen Perowskitschicht und dem Top-Kontakt die Stabilität drastisch erhöht. Dabei stieg der Wirkungsgrad auf knapp 27 Prozent, was dem aktuellen state-of-the-art entspricht. Dieser hohe Wirkungsgrad nahm auch nach 1.200 Stunden im Dauerbetrieb nicht ab. An der Studie waren Forschungsteams aus China, Italien, der Schweiz und Deutschland beteiligt. Sie wurde in Nature Photonics veröffentlicht.