Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Die Rastertunnelmikroskopie zeigt: Graphen wölbt sich über den Goldclustern und bildet ein regelmäßiges Muster, das an das Polster eines Chsterfield-Sofas erinnert.

Die Rastertunnelmikroskopie zeigt: Graphen wölbt sich über den Goldclustern und bildet ein regelmäßiges Muster, das an das Polster eines Chsterfield-Sofas erinnert. © HZB

Typisches Chesterfield-Polster. (

Typisches Chesterfield-Polster. ( © mit freundlicher Genehmigung von Petr Kratochvil

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen, wie eine Bienenwabe. Graphen ist strikt zweidimensional, also unendlich dünn, extrem leitfähig, perfekt lichtdurchlässig und sehr stark belastbar. Das „Wundermaterial“ besitzt außerdem weitere interessante Eigenschaften, die mit seinem Aufbau zusammenhängen.

So können die Spins (winzige magnetische Momente) der Leitungselektronen überraschenderweise sehr gut kontrolliert werden. Denn bringt man eine Lage Graphen auf ein Nickelsubstrat auf und schiebt Goldatome dazwischen, dann erhöht sich die so genannte „Spin-Bahn-Wechselwirkung“ dramatisch um den Faktor 10.000, sodass sich die Ausrichtung der Spins durch äußere Felder beeinflussen lässt.

Dass dies funktioniert hatten die Physiker um Dr. Andrei Varykhalov am HZB bereits mehrfach demonstriert. Allerdings war nicht klar, warum die Präsenz der Goldatome sich derartig stark auf das Verhalten der Spinaufspaltung im Graphen auswirkt.

„Wir wollten daher herausfinden, wie es dazu kommt, dass die hohe Spin-Bahn-Wechselwirkung, die für Gold charakteristisch ist, sich auf das Graphen überträgt“, sagt Varykhalov. In der jetzt veröffentlichten Arbeit zeigen die Physiker, dass sich die Goldatome in der Zwischenschicht nicht ganz gleichmäßig, sondern in kleinen Grüppchen oder Clustern auf dem Nickel-Substrat verteilen. Diese Gold-Cluster bilden wiederum ein regelmäßiges Muster unter dem Graphen. Dazwischen bleiben Nickelatome frei. Das Graphen bindet stark zum Nickel und wölbt sich so deutlich über den Gold-Clustern. „Es sieht fast so aus wie ein Polster eines Chesterfield-Sofas”, erklärt Varykhalov. „An den Punkten, an denen Gold und Kohlenstoff in enge Berührung kommen, entsteht die extrem hohe Spin-Bahn-Wechselwirkung, die wir beobachten. Dieses Ergebnis wird durch Rastertunnelmikroskopie und Dichtefunktionsanalysen gestützt“.

Zur Publikation:

2D Materials, Vol.4, Nr3 (2017): "Nanostructural origin of giant Rashba effect in intercalated graphene". M Krivenkov, E Golias, D Marchenko, J Sánchez-Barriga, G Bihlmayer, O Rader and A Varykhalov. 

Doi: 10.1088/2053-1583/aa7ad8

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
    Science Highlight
    21.12.2024
    Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
    An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser eignet sich ein Molekül als molekularer Nanomagnet. Solche Nanomagnete besitzen eine Vielzahl von potenziellen Anwendungen, z. B. als energieeffiziente Datenspeicher. An der Studie waren Forschende aus dem Max-Planck-Institut für Kohlenforschung (MPI KOFO), dem Joint Lab EPR4Energy des Max-Planck-Instituts für Chemische Energiekonversion (MPI CEC) und dem Helmholtz-Zentrums Berlin beteiligt.
  • Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung
    Nachricht
    13.12.2024
    Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung
    Auf dem diesjährigen Nutzertreffen zeichnete  der Freundeskreis des HZB die herausragende Promotionsarbeit von Dr. Dieter Skroblin von der Technischen Universität Berlin mit dem Ernst-Eckhard-Koch-Preis aus. Der Europäische Innovationspreis Synchrotronstrahlung ging an Dr. Manfred Faubel vom Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen und Dr. Bernd Winter vom Fritz-Haber-Institut in Berlin.
  • Modernisierung der Röntgenquelle BESSY II
    Nachricht
    11.12.2024
    Modernisierung der Röntgenquelle BESSY II
    Im Fokus des Nutzertreffens 2024: Das Helmholtz-Zentrum Berlin (HZB) stellt das Upgrade-Programm BESSY II+ vor.  Es ermöglicht, die Weltklasse-Forschung an BESSY II weiter auszubauen und neue Konzepte im Hinblick auf die Nachfolgequelle BESSY III zu erproben.