Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

Perovskite-based tandem solar cells can achieve now efficiencies better than 25%.

Perovskite-based tandem solar cells can achieve now efficiencies better than 25%. © HZB

A 1 cm2 perovskite silicon tandem solar cell achieves an independently certified efficiency of 25.2 %. This was presented this week at an international conference in Hawaii, USA. The cell was developed jointly by HZB, Oxford University and Oxford PV - The Perovskite CompanyTM.

"Perovskite-based tandem solar cells can use light particularly efficiently and therefore offer the opportunity to achieve even higher efficiencies. That is why we have significantly expanded our expertise with the new Helmholtz innovation laboratory HySPRINT," says Prof. Dr. Rutger Schlatmann, Director of the Competence Center Thin Film and Nanotechnology for Photovoltaics Berlin (PVcomB) at HZB. "In our cooperation with Oxford PV, we aim to further optimize perovskite silicon tandem cells, demonstrate their scalability and facilitate their integration into large-area solar modules. For this new result we have optimized our high-efficiency silicon heterojunction bottom cell and developed an optical adaptation to the top cell using a very specific SiOx intermediate layer".

At the World Conference on Photovoltaic Energy Conversion, WCPEC-7 in Waikoloa, Hawaii, tandem solar cells involving perovskites were an important topic: two records have been presented with 25.2% certified efficiency: one from the group of Prof. Christophe Ballif at EPFL/CSEM and one from the consortium HZB/OxfordPV/Oxford University, presented by HZB scientist Dr. Bernd Stannowski. The third one, with 25.0% certified efficiency is a tandem cell developed by an HZB team headed by Dr. Steve Albrecht.

Oxford PV was established in 2010 and has had a close working relationship with Professor Snaith’s research group at the University of Oxford. In January 2018, Oxford PV announced its collaboration with HZB, the leading German research centre focused on energy materials research.

Press Release by Oxford PV

More Information on PVcomB at HZB

More Information on HySPRINT at HZB

More Information on the group Photovoltaics and Optoelectronics at University of Oxford


You might also be interested in

  • Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    News
    19.06.2024
    Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    On June 17, 2024, the Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) was officially inaugurated in Jena in the presence of Wolfgang Tiefensee, Minister for Economy, Science, and Digital Society of the Free State of Thuringia. The institute was founded by the Helmholtz Center Berlin for Materials and Energy (HZB) in cooperation with the Friedrich Schiller University Jena. It is dedicated to developing sustainable polymer materials for energy technologies, which are expected to play a key role in the energy transition and support Germany’s goal of becoming climate-neutral by 2045.
  • “Research and development in times of war: not only possible, but crucial!”
    Interview
    18.06.2024
    “Research and development in times of war: not only possible, but crucial!”
    The Ukraine Recovery Conference took place in Berlin on 11 and 12 June. On a side-event representatives from Helmholtz, Fraunhofer and Leibniz discussed how research can contribute to the sustainable reconstruction of Ukraine.
    In this interview, Bernd Rech, scientific director at HZB, talks about the importance of research during the war and projects such as Green Deal Ukraina.

  • MXenes for energy storage: Chemical imaging more than just surface deep
    Science Highlight
    17.06.2024
    MXenes for energy storage: Chemical imaging more than just surface deep
    A new method in spectromicroscopy significantly improves the study of chemical reactions at the nanoscale, both on surfaces and inside layered materials. Scanning X-ray microscopy (SXM) at MAXYMUS beamline of BESSY II enables the investigation of chemical species adsorbed on the top layer (surface) or intercalated within the MXene electrode (bulk) with high chemical sensitivity. The method was developed by a HZB team led by Dr. Tristan Petit. The scientists demonstrated among others first SXM on MXene flakes, a material used as electrode in lithium-ion batteries.