Perowskit/Silizium-Tandemzellen auf dem Weg in die Massenproduktion
Die am HZB betriebene Clusteranlage ermöglicht es, großflächige Perowskit/Silizium-Tandemsolarzellen herzustellen. Die Anlage ist weltweit einzigartig und trägt dazu bei, neue industrienahe Prozesse, Materialien und Solarzellen zu entwickeln. © B. Stannowski / HZB
Um Tandem-Solarzellen vom Labormaßstab in die Produktion zu überführen kooperiert das HZB mit dem Solarmodulhersteller Meyer Burger, der große Expertise in der Heterojunction-Technologie (HJT) für Silizium-Module besitzt. Im Rahmen dieser Kooperation sollen serienreife Silizium-Bottom-Zellen auf Basis der Heterojunction-Technologie mit einer Top-Zelle auf Basis der Perowskit-Technologie kombiniert werden.
Meyer Burger ist ein Hersteller von qualitativ hochwertigen Solarmodulen auf Basis der Silizium-Heterojunction-Technologie (HJT). Das Forschungs- und Entwicklungsteam von Meyer Burger hat bereits in den vergangenen Jahren gemeinsam mit dem Team von Bernd Stannowski am Helmholtz-Zentrum Berlin HJT- Zellen entwickelt.
Das HZB besitzt große Expertise im Bereich Perowskit-Solarzellen. In der jüngsten Zeit wurden, maßgeblich durch die Arbeiten der Gruppe um Steve Albrecht, Labor-Tandemsolarzellen, die Heterojunction und Perowskit kombinieren, mit Rekordwirkungsgrade von über 31 Prozent erzielt. Allerdings haben solche Rekord-Tandemzellen nur die laborüblichen Flächen von 1 cm² und werden zum Teil mit Prozessen hergestellt, die nicht skalierbar sind.
„Wir freuen uns daher, dass wir mit Meyer Burger kooperieren, um diese fantastische Technologie in die Anwendung zu überführen“, sagt Bernd Stannowski, der die Kooperation am HZB leitet. Dabei kommt auch eine neue Clusteranlage (KOALA) zum Einsatz. Diese weltweit einzigartige Anlage, gefördert vom Bundesministerium für Wirtschaft und Klimaschutz (BMWK) und dem Forschungsministerium (BMBF), ermöglicht es, auf Industrie üblichen großen Wafern Perowskit/Silizium-Tandemsolarzellen im Vakuum herzustellen.
„Meyer Burger fertigt in Europa und schafft dadurch hochwertige Arbeitsplätze. Dabei verwertet das Unternehmen Technologien, die in Europa entwickelt wurden“, sagt Rutger Schlatmann, Direktor des Kompetenzzentrum Photovoltaik Berlin (PVcomB) am HZB. Der neue Kooperationsvertrag ist auf drei Jahre angelegt.
red.
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=24366;sprache=de
- Link kopieren
-
Batterieforschung: Alterungsprozesse operando sichtbar gemacht
Lithium-Knopfzellen mit Elektroden aus Nickel-Mangan-Kobalt-Oxiden (NMC) sind sehr leistungsfähig. Doch mit der Zeit lässt die Kapazität leider nach. Nun konnte ein Team erstmals mit einem zerstörungsfreien Verfahren beobachten, wie sich die Elementzusammensetzung der einzelnen Schichten in einer Knopfzelle während der Ladezyklen verändert. An der Studie, die nun im Fachjournal Small erschienen ist, waren Teams der Physikalisch-Technischen Bundesanstalt (PTB), der Universität Münster sowie Forschende der Forschungsgruppe SyncLab des HZB und des Applikationslabors BLiX der Technischen Universität Berlin beteiligt. Ein Teil der Messungen fand mit einem Instrument im BLiX-Labor statt, ein weiterer Teil an der Synchrotronquelle BESSY II.
-
Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
-
Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.