Öffnet in neuem Fenster Opens in a new window Öffnet externe Seite Opens an external site Öffnet externe Seite in neuem Fenster Opens an external site in a new window

Project PECSYS

Resources

Publications - Articles in Peer-reviewed journals

2021 - Bao, F.,  Kemppainen, E., Dorbandt, I., Bors, R.,  Xi, F., Schlatmann, R., van de Krol, R., Calnan, S. Understanding the Hydrogen Evolution Reaction Kinetics of Electrodeposited Nickel-Molybdenum in Acidic, Near-Neutral, and Alkaline Conditions. ChemElectroChem 2021, 8, 195.

 
2021 - Bayrak Pehlivan, I., Atak, G., Niklasson, G.A., Stolt, L., Edoff, M. and Edvinsson, T. Electrochromic solar water splitting using a cathodic WO3 electrocatalyst. Nano Energy, 81: 105620. 2021.

Open Access Version: https://www.sciencedirect.com/science/article/pii/S2211285520311939?dgcid=rss_sd_all

2021 - Bayrak Pehlivan, I., J. Oscarsson, Z. Qiu, L. Stolt, M. Edoff, and T. Edvinsson. NiMoV and NiO-based catalysts for efficient solar-driven water splitting using thermally integrated photovoltaics in a scalable approach. iScience, 24: 101910. 2021.

Open Access Version: https://www.cell.com/action/showPdf?pii=S2589-0042%2820%2931107-X

2020 - Bayrak Pehlivan, I., Malm, U., Neretnieks, P., Glüsen, A., Müller, M., Welter, K., Haas, S.; Calnan, S., Canino, A., Milazzo, R.G., Privitera, S.M.S., Lombardo, S., Stolt, L., Edoff, M. and Edvinsson, T. The climatic response of thermally integrated photovoltaic–electrolysis water splitting using Si and CIGS combined with acidic and alkaline electrolysis. Sustainable Energy & Fuels. 2020.

Open Access Version: https://pubs.rsc.org/en/content/articlelanding/2020/SE/D0SE01207F#!divAbstract 

2020 - M. Lee, X. Ding, S. Banerjee, F. Krause,   V. Smirnov, O. Astakhov, T. Merdzhanova,   B. Klingebiel, T. Kirchartz, F. Finger, U. Rau, S, Haas. Bifunctional CoFeVOx Catalyst for Solar Water Splitting by using Multijunction and Heterojunction Silicon Solar Cells. Advanced Materials Technologies 2020.

Open Access Version: https://onlinelibrary.wiley.com/doi/full/10.1002/admt.202000592

2020 - S.M.S. Privitera, M. Muller, W. Zwaygardt, M. Carmo, R.G. Milazzo, P. Zani, M. Leonardi, F. Maita, A. Canino, M. Foti, F. Bizzarri, C. Gerardi, S.A. Lombardo. Highly efficient solar hydrogen production through the use of bifacial photovoltaics and membrane electrolysis. Journal of Power Sources 2020, 273, 228619.

Open Access Version: https://www.sciencedirect.com/science/article/pii/S037877532030923X

2020 - R. G. Milazzo, S.M.S. Privitera, S. Scalese, F. Monforte, C. Bongiorno, G.G. Condorelli, S.A. Lombardo. Ultralow loading electroless deposition of IrOx on nickel foam for efficient and stable water oxidation catalysis. Int. Journal of Hydrogen Energy 2020, 45, 26583.

2020 - E. Kemppainen, S. Aschbrenner, F. Bao, A., C. Schary, R. Bors, S. Janke, I. Dorbandt, B. Stannowski, R. Schlatmann and S. Calnan. Effect of the ambient conditions on the operation of a large-area integrated photovoltaic electrolyse. Sustainable Energy & Fuels, 2020, 4, 4831 – 4847.

Open Access Version: https://pubs.rsc.org/en/content/articlehtml/2020/se/d0se00921k

2020 - D. Sengupta, S.M.S. Privitera, R. G. Milazzo, C. Bongiorno, S. Scalese, S. Lombardo. Ni foam electrode solution impregnated with Ni-Fe X (OH) Y catalysts for efficient oxygen evolution reaction in alkaline electrolyzers. RSC Advances 2020, 10(43), 25426. 

Open Access Version: https://pubs.rsc.org/en/content/articlehtml/2020/ra/d0ra03856c

2020 - M. Lee, B. Turan, J.‐P. Becker, K. Welter, B. Klingebiel, E. Neumann, Y. J. Sohn, T. Merdzhanova, T. Kirchartz, F. Finger, U. Rau, S. Haas. A Bias-Free, Stand-Alone, and Scalable Photovoltaic–Electrochemical Device for Solar Hydrogen Production. Advanced Sustainable Systems 2020, 2000070.

Open Access Version: https://doi.org/10.1002/adsu.202000070

2019 - S. Calnan, S. Aschbrenner, F. Bao, E. Kemppainen, I. Dorbandt and R. Schlatmann. Prospects for Hermetic Sealing of Scaled-Up Photoelectrochemical Hydrogen Generators for Reliable and Risk Free Operation. Energies 2019, 12(21), 4176.

Open Access Version: https://doi.org/10.3390/en12214176

2019 - M. Müller, W. Zwaygardt, E. Rauls, M. Hehemann, S. Haas, L. Stolt, H. Janßen and M. Carmo. Characteristics of a New Polymer Electrolyte Electrolysis Technique with Only Cathodic Media Supply Coupled to a Photovoltaic Panel. Energies 2019, 12(21), 4150;

Open Access Version: https://doi.org/10.3390/en12214150

 

2019 - İ. Bayrak Pehlivan, M. A. Coyotzi, Z. Qiu,  G. A. Niklasson, T. Edvinsson. Impedance spectroscopy modeling of nickel–molybdenum alloys on porous and flat substrates for applications in water splitting. The Journal of Physical Chemistry C 123 (39), 23890-23897. 

2019 - İ. Bayrak Pehlivan, M. Edoff, L. Stolt and T. Edvinsson. Optimum Band Gap Energy of ((Ag),Cu)(InGa)Se2 Materials for Combination with NiMo–NiO Catalysts for Thermally Integrated Solar-Driven Water Splitting Applications. Energies 2019, 12(21), 4064.

Open Access Version: https://doi.org/10.3390/en12214064

2019 - R.G. Milazzo, S. M. S. Privitera, S. Scalese, and S. A. Lombardo. Effect of morphology and mechanical stability of Nanometric Platinum layer on Nickel foam for hydrogen evolution reaction. Energies 2019, 12(16), 3116.

Open Access Version: https://doi.org/10.3390/en12163116

2019 - S. Filice, G. Urzì, R. G. Milazzo, S. M. S. Privitera, S. A. Lombardo, G. Compagnini and S. Scalese. Applicability of a New Sulfonated Pentablock Copolymer Membrane and Modified Gas Diffusion Layers for Low-Cost Water Splitting Processes. Energies 2019, 12(11), 2064. 

Open Access Version: https://doi.org/10.3390/en12112064

2019 - G A Niklasson, Z Qiu, İ Bayrak Pehlivan, T Edvinsson. Impedance spectroscopy of water splitting reactions on nanostructured metal-based catalysts. Special issue of the IOP conference series: Material Sciences and Engineering, IOP Conf. Ser.: Mater. Sci. Eng. 503 012005.

Open Access Version: https://iopscience.iop.org/article/10.1088/1757-899X/503/1/012005/pdf

 

2018 - Milazzo R.G., Privitera S.M.S., D'Angelo D., Scalese S., Di Franco S., Maita F., Lombardo S. Spontaneous galvanic displacement of Pt nanostructures on nickel foam: Synthesis, characterization and use for hydrogen evolution reaction. International Journal of Hydrogen Energy, Volume 43, Issue 16, 19 April 2018, Pages 7903-7910.

Open Access Version: https://doi.org/10.1016/j.ijhydene.2018.03.042

Project Videos

A scalable thermally integrated CuInGaSe (CIGS) photovoltaic-alkaline electrolyser

Within the PECSYS Project, Uppsala University and Solibro Research AB, developed a thermally integrated photovoltaic (PV)-electrolysis device made up of a CuInGaSe (CIGS) photovoltaic module and a FeNiOH (cathode)-FeNiOH (anode)-based alkaline electrolyser. The solar to hydrogen conversion efficiency (STH) remained above 10 % for more than 1 hour at 100 mW cm-2 resulting in an average hydrogen production rate of 5.74 mL min-1 for a device with a 2×3-cell CIGS module (active area ~ 80 cm²) and an electrolyser with an electrode area of 100 cm2. The average hydrogen production rate and STH efficiency were 5.4 mL min-1 and 9.7 % for 7-days-operation of the device, respectively.

A scalable thermally integrated CuInGaSe (CIGS) photovoltaic-alkaline electrolyser

02:55

Solar hydrogen generation demonstrator based on bifacial photovoltaics

Within the PECSYS Project, the Institute for Microelectronics and Microsystems (IMM) of the Italian National Research Council (CNR), together with Enel Green Power and Forschungszentrum Jülich, developed a solar to hydrogen generation demonstrator based on a 730 cm2 three-cell bifacial silicon heterojunction photovoltaic mini-module. The photovoltaic module has been directly coupled to a water electrolysis system based on a proton exchange membrane (PEM). The system has operated outdoor continuously from June to September 2020 in Catania, Italy. The main results on the system performance at 1000 W/m2 of incident solar radiation are the following:

  1. Solar to hydrogen (STH) conversion efficiency  of 13.5 %
  2. H2 production rate of 4.2 grams / m2 / hr
  3. Optimized bifaciality at 30 % albedo allowing a 16% gain in conversion efficiency compared to mono-facial photovoltaics.

Solar hydrogen generation demonstrator based on bifacial photovoltaics

03:22

A 10 m² direct solar to hydrogen demonstrator

Within the PECSYS Project, Forschungszentrum Jülich together with the other partners developed a directly coupled photovoltaic (PV) - water electrolysis system. Proton exchange membrane (PEM) electrolysers, with media supply exclusively from the cathode, were electrically coupled to commercial sized PV modules, without any power electronics, in a so-called cassette design. The performance of this direct solar to hydrogen generating system during outdoor operation in Jülich, Germany is summarised as:   

  • Solar to hydrogen (STH) conversion efficiency was in the range of 10 % all over the year
  • Durability over more than 6 months (~2,500 h) was demonstrated
  • Cumulative generation of 231,000 liters hydrogen over 6 months was achieved

A 10 m² direct solar to hydrogen demonstrator

02:22

PVEC demonstration Video HZB

18.52 s

Project brochure

Download our PECSYS brochure