Photovoltaik-Reallabor knackt die Marke von 100 Megawattstunden
Blick auf die Solarfassade des Reallabors. © HZB
Vor rund drei Jahren ging das Reallabor am HZB in Betrieb. Seitdem liefert die Photovoltaik-Fassade Strom aus Sonnenlicht. Am 27. September 2024 wurde die Marke von 100 Megawattstunden erreicht.
Solarfassaden bieten ungenutztes Potenzial, um sauberen Strom zu erzeugen. Wie viel sie tatsächlich leisten und welche Umwelteinflüsse dabei eine Rolle spielen, wird am Reallabor des HZB untersucht. Die dort installierten Fassadenelemente erreichten nun die 100-Megawattstunden-Marke.
Dies entspricht der Strommenge, die benötigt wird, um einen Vier-Personen-Haushalt in Deutschland 30 Jahre lang mit sauberem Strom zu versorgen. Am HZB wird der erzeugte Strom vollständig selbst genutzt, was die Anlage besonders wirtschaftlich macht. Laut ersten Schätzungen haben sich die Mehrkosten im Vergleich zu einer herkömmlichen Alu-Fassade nach 18 Jahren amortisiert.
Was ist das Reallabor?
Das Reallabor ist ein Forschungsgebäude auf dem BESSY II-Gelände in Berlin-Adlershof, das mit einer Photovoltaik-Fassade ausgestattet ist. Insgesamt wurden 360 rahmenlose, blau beschichtete Module an der Süd-, West- und Nordfassade des Gebäudes installiert. Dabei wurde besonderer Wert auf eine ansprechende Gestaltung der Solarfassade gelegt.
Das Reallabor verfügt über insgesamt 120 Mess-Stellen und Sensoren, unter anderem auch für Temperatur, Sonnenbestrahlung und Luftströmungen. So kann das Verhalten der Solarmodule und des gesamten PV-Fassadensystems bei verschiedenen Jahreszeiten und Witterungsbedingungen über einen langen Zeitraum hinweg genau beobachtet werden.
Ergebnisse fließen in die Beratungsstelle für bauwerkintegrierte Photovoltaik ein
Diese Erkenntnisse fließen direkt in die Beratung ein und kommen somit auch der Gesellschaft zugute. Das HZB betreibt die unabhängige Beratungsstelle für bauwerkintegrierte Photovoltaik (BAIP). Die Expert*innen beraten Architekt*innen, Bauherren und Planende über Technologien, Produkte, Gestaltungsoptionen, technische Umsetzbarkeiten und rechtliche Rahmenbedingungen.
sz
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=27946;sprache=de
- Link kopieren
-
Strategisches Positionspapier zur Stärkung der Solarindustrie
Frankfurt, 06. März 2025 – Die führenden deutschen Solarforschungseinrichtungen, die Fachabteilung „Photovoltaik Produktionsmittel“ des Industrieverbands VDMA und das Produktionsplanungs-Unternehmen RCT Solutions, haben ein gemeinsames Positionspapier zur Stärkung der deutschen und europäischen Solarindustrie veröffentlicht. Dieses wird nun an die Parteien übermittelt, die nach der Bundestagswahl im Bundestag vertreten sind. Ziel ist es, die vorgeschlagenen Maßnahmen in die Koalitionsverhandlungen einzubringen und damit die Grundlage für eine widerstandsfähige und wettbewerbsfähige Solarindustrie in Deutschland zu schaffen.
-
Innovative Batterie-Elektrode aus Zinn-Schaum
Metallbasierte Elektroden in Lithium-Ionen-Akkus versprechen deutlich höhere Kapazitäten als konventionelle Graphit-Elektroden. Leider degradieren sie aufgrund von mechanischen Beanspruchungen während der Lade- und Entladezyklen. Nun zeigt ein Team am HZB, dass ein hochporöser Schaum aus Zinn den mechanischen Stress während der Ladezyklen deutlich besser abfedern kann. Das macht Zinn-Schäume als potentielles Material für Lithium-Batterien interessant.
-
Perowskit-Solarzellen: Der Schlüssel zur Langzeitstabilität
Perowskit-Solarzellen sind kostengünstig in der Herstellung und hocheffizient. Im Außeneinsatz unter realen Wetterbedingungen ist jedoch noch fraglich, wie lange sie stabil bleiben. Dieses Thema greift nun eine internationale Kooperation unter Leitung von Prof. Antonio Abate in der Fachzeitschrift Nature Reviews Materials auf. Die Forschenden untersuchten die Auswirkungen von wiederholten thermischen Zyklen auf Mikrostrukturen und Wechselwirkungen zwischen den verschiedenen Schichten von Perowskit-Solarzellen. Das Fazit: Der entscheidende Faktor für die Degradation von Metall-Halogenid-Perowskiten sind thermische Spannungen. Daraus lassen sich Strategien ableiten, um die Langzeitstabilität von Perowskit-Solarzellen gezielt zu steigern.