HZB nutzt Strom produzierende Hauswand als Real-Labor

Eröffnet! Bernd Rech (l.) und Christian Rickerts (r.) drückten am 6. September den symbolischen roten Knopf zum Start des Real-Labors in Adlershof.

Eröffnet! Bernd Rech (l.) und Christian Rickerts (r.) drückten am 6. September den symbolischen roten Knopf zum Start des Real-Labors in Adlershof. © HZB / M. Setzpfandt

Viele Gäste kamen zur Eröffnung und begutachteten die optisch ansprechende Solarfassade des Neubaus.

Viele Gäste kamen zur Eröffnung und begutachteten die optisch ansprechende Solarfassade des Neubaus.

Die Gäste unserer Talkrunde

Die Gäste unserer Talkrunde

Im Gespräch: Die Architekten der Beratungsstelle BAIP informierten über den vielfältigen Einsatz von gebäudeintegrierter Photovoltaik.

Im Gespräch: Die Architekten der Beratungsstelle BAIP informierten über den vielfältigen Einsatz von gebäudeintegrierter Photovoltaik.

Im Glanz der Sonne: Das neue Forschungsgebäude mit der Solar-Fassade.

Im Glanz der Sonne: Das neue Forschungsgebäude mit der Solar-Fassade.

Im Beisein des Staatssekretärs für Wirtschaft, Energie und Betriebe des Landes Berlin, Christian Rickerts, hat das HZB am 6. September 2021 die Solarfassade eines Forschungsneubaus offiziell in Betrieb genommen. Das Besondere daran: Die elegante Fassade erzeugt nicht nur bis zu 50 Kilowatt Strom (Peak-Leistung). Sie liefert gleichzeitig auch wichtige Erkenntnisse über das Verhalten der Solar-Module bei verschiedenen Witterungsbedingungen.   

Solarenergie gilt als eine der vielversprechendsten erneuerbaren Energien. Immer mehr Häuser haben eine Photovoltaik-Anlage auf dem Dach und vermehrt sind große Freiflächenanlagen zu sehen. Doch Solarmodule lassen sich auch vielfältiger integrieren, zum Beispiel in Gebäudefassaden. Durch die solare Aktivierung der gesamten Gebäudehülle wird die Photovoltaik zum Bauelement und macht Gebäude zu Stromerzeugern. Dabei lassen sich die Solarmodule auch optisch ansprechend integrieren. Seit zwei Jahren berät die am HZB angesiedelte Beratungsstelle für bauwerkintegrierte Photovoltaik (BAIP) genau zu diesem Thema.

Nun macht das HZB selbst den Praxistest. „Erstmals wird ein komplettes Bauwerk mit einer fassadenintegrierten Photovoltaikanlage als Real-Labor betrieben. Die umfangreiche Messtechnik ermöglicht neue Erkenntnisse über das reale Verhalten von Solarmodulen in einer Fassade bei verschiedenen Jahreszeiten und Witterungsbedingungen, über einen langen Zeitraum“, sagt Dr. Björn Rau, der die Beratungsstelle BAIP am HZB leitet.

Das Wichtigste auf einen Blick:

  • das Real-Labor besteht aus 360 CIGS-Dünnschicht-Solarmodulen, die an drei Fassaden (West- Süd und Nordseite) installiert sind
  • Leistung je Modul: ca. 135 Watt (Peak-Leistung der gesamten Fassade: knapp 50 Kilowatt)
  • zusätzliche Sensortechnik (u.a. 72 Temperatur-, 10 Bestrahlungs,- 4 Windsensoren) installiert
  • dient zur langfristigen Untersuchung der PV-Erträge in Abhängigkeit von Umweltfaktoren (Verschmutzungen), Witterungsbedingungen (Sonne, Wind, Reflexion) und Himmelsrichtungen usw.
  • Vergleich zwischen realen Daten und Simulationswerten von Ertragsprognosen

Die rahmenlose Ausführung der Solarmodule ist optisch besonders ansprechend

Eine Besonderheit besteht in der verdeckten Aufhängung. Sie ermöglicht eine rahmenlose Ausführung ohne zusätzliche Einfassung am Modulrand. Dadurch lassen sich die Module ideal mit der Metallvorhangfassade des Gebäudes kombinieren. Björn Rau betont: „Ganz bewusst haben wir auch Wert auf die gestalterische Integration der Module in die Gebäudehülle gelegt und mit der CIGS-Technologie das Materialsystem ausgewählt, über das am HZB eine sehr große Expertise existiert.“ Viele Forschungsgruppen am HZB arbeiten mit CIGS-Dünnschichten, von der Materialforschung bis hin zur Entwicklung von Bauelementen.

Der Forschungsbau: was innen passiert

Die Fassade dient der Photovoltaik-Forschung als Real-Labor, doch im Gebäude passiert etwas ganz anderes: Hier entwickeln und bauen Forscher*innen weltweit einzigartige Komponenten für BESSY II und andere Synchrotronstrahlungsquellen. Das Gebäude beherbergt einen Reinraum, diverse Labore und Montageplätze für international renommierte Beschleunigerforschung des HZB.

red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Science Highlight
    04.11.2024
    BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.
  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.