Weltrekord für Perowskit-CIGS-Tandem-Solarzelle

Die Pero-CIGS-Tandemzelle erreicht den Rekordwirkungsgrad von 23,26 Prozent.

Die Pero-CIGS-Tandemzelle erreicht den Rekordwirkungsgrad von 23,26 Prozent. © HZB

Die Elektronenmikroskopieaufnahme zeigt eine AZO-Schicht (rötlich eingefärbt) zwischen dem Perowskit- und dem CIGS-Halbleiter. Die monomolekulare SAM-Schicht befindet sich auf der AZO-Schicht.

Die Elektronenmikroskopieaufnahme zeigt eine AZO-Schicht (rötlich eingefärbt) zwischen dem Perowskit- und dem CIGS-Halbleiter. Die monomolekulare SAM-Schicht befindet sich auf der AZO-Schicht. © HZB

Ein wichtiger Teil der Arbeiten fand im Helmholtz Innovation lab HySPRINT-Labor am HZB statt.

Ein wichtiger Teil der Arbeiten fand im Helmholtz Innovation lab HySPRINT-Labor am HZB statt. © Swantje Furtak

Ein Team um Prof. Steve Albrecht aus dem HZB stellt auf der weltgrößten internationalen Fachkonferenz EU PVSEC in Marseille am 11. September 2019 einen neuen Weltrekord für eine Tandem-Solarzelle vor. Die Solarzelle kombiniert die Halbleitermaterialien Perowskit und CIGS und erreicht damit einen zertifizierten Wirkungsgrad von 23,26 Prozent. Ein Grund für diesen Erfolg liegt in einer Zwischenschicht aus organischen Molekülen, die sich selbstorganisiert so anordnen, dass auch raue Halbleiter-Oberflächen lückenlos bedeckt werden. Dafür wurden zwei Patente eingereicht.

Perowskit-basierte Solarzellen haben in den letzten zehn Jahren unglaublich rasche Steigerungen des Wirkungsgrades gezeigt. Die Kombination von Perowskiten mit klassischen Halbleitermaterialien wie Silizium oder auch Kupfer-Indium-Gallium-Selenid (CIGS) verspricht preiswerte und leistungsstarke Solarmodule für die Zukunft. Allerdings kommt es an den Kontakten zwischen beiden Halbleitern zu Verlusten, die den Wirkungsgrad deutlich reduzieren.

Neuer Rekordwert

Der HZB-Physiker Prof. Steve Albrecht und sein Team haben nun neue Kontaktschichten etabliert, die diese Verluste deutlich reduzieren. Damit konnten sie eine monolithische Tandem-Solarzelle aus Perowskit und CIGS herstellen, die einen Wirkungsgrad von 23,26 Prozent erreicht. Dieser Wirkungsgrad ist offiziell zertifiziert und aktuell ein Weltrekord. Die Tandemzelle besitzt eine aktive Fläche von einem Quadratzentimeter und erreicht damit einen weiteren Meilenstein, denn Perowskit-CIGS-Tandemzellen waren bislang deutlich kleiner.

"Selbstorganisierte" Kontaktschicht

Die Kontaktschichten bestehen aus organischen Molekülen auf Carbazol-Basis mit Phosphonsäuregruppen, die sich selbstorganisiert zu monomolekularen Schichten anordnen (sogenannte „self-assembled monolayers“ oder SAMs). Diese SAMs haben sehr günstige elektro-optische Eigenschaften und die Selbstorganisation führt sogar auf rauen Halbleiterschichten zu lückenloser Bedeckung.

Einfach, robust und kompatibel

“Die SAMs bestechen durch ihre einfache und robuste Handhabung, die auch die industrielle Hochskalierung erlaubt. Außerdem sind sie kompatibel zu unterschiedlichsten Substrate und der Materialverbrauch ist extrem gering“, erklärt Amran Al-Ashouri, Doktorand in der Gruppe von Albrecht und Erstautor der Studie. Dies könne den Fortschritt hin zu sehr preiswerten PV-Technologien mit Perowskiten weiter beschleunigen. Die Gruppe hat dazu inzwischen zwei Patente beantragt und ist in Verhandlungen über eine Lizensierung.

Prof. Steve Albrecht leitet die Nachwuchsgruppe „Perowskit-Tandem-Solarzellen“, die vom BMBF gefördert wird. Die Arbeiten zu den Perowskit-Schichten fanden vorwiegend im Helmholtz-Innovation Lab HySPRINT statt und die SAMs wurden in enger Kollaboration mit der Kaunas University of Technology (Litauen) entwickelt, wo die Gruppe um Prof. Vytautas Getautis die Moleküle synthetisiert hat. Die CIGS-Schichten stammen aus der Gruppe von Dr. Christian Kaufmann, der am HZB die Hocheffizienz CIGS Aktivitäten leitet und durch das Projekt SpeedCIGS unterstützt wird, welches vom BMWi gefördert wird.

Präsentation auf der EU PVSEC

Albrecht wird die Arbeiten dazu am Mittwoch, den 11. September, auf einem Plenarvortrag der EU PVSEC in Marseille vorstellen. Die EU PVSEC ist die größte Fachkonferenz zu Photovoltaik und Solarenergie der Welt.  

Vortrag: Towards Highly Efficient Monolithic Tandem Devices with Perovskite Top Cells; S. Albrecht, A. Al-Ashouri, E. Köhnen, M. Jost, A. Morales, T. Bertram, L. Korte, B. Stannowski, C. Kaufmann, R. Schlatmann

Ort: EU PVSEC, Marseille, Frankreich vom 9.-13. September 2019, PLENARY SESSION 3CP.1

Zeit: Mittwoch, 11. September um 10:30 - 12:00 Perovskite, Organic, CIGS and III-V Multi-Junction Devices

 

 

 

 

 

arö


Das könnte Sie auch interessieren

  • MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Science Highlight
    17.06.2024
    MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Eine neue Methode in der Spektromikroskopie verbessert die Untersuchung chemischer Reaktionen auf der Nanoskala, sowohl auf Oberflächen als auch im Inneren von Schichtmaterialien. Die Raster-Röntgenmikroskopie (SXM) an der MAXYMUS-Beamline von BESSY II ermöglicht den hochsensitiven Nachweis von chemischen Gruppen, die an der obersten Schicht (Oberfläche) adsorbiert oder in der MXene-Elektrode (Volumen) eingelagert sind. Die Methode wurde von einem HZB-Team unter der Leitung von Dr. Tristan Petit entwickelt. Das Team demonstrierte die Methode nun an MXene-Flocken, einem Material, das als Elektrode in Lithium-Ionen-Batterien eingesetzt wird.
  • Chilenischer Präsident zu Besuch am Helmholtz-Zentrum Berlin
    Nachricht
    12.06.2024
    Chilenischer Präsident zu Besuch am Helmholtz-Zentrum Berlin
    Mit einer 50-köpfigen Delegation besuchte der chilenische Staatspräsident Gabriel Boric Font am Dienstag das HZB. Zu den großen Momenten des Abends zählten die Unterzeichnung eines Memorandum of Understanding zwischen der chilenischen „Gesellschaft für Produktionsförderung“ CORFO und dem HZB sowie der Besuch der Röntgenquelle BESSY II.
  • Schlüsselrolle von Nickel-Ionen im Simons-Prozess entdeckt
    Science Highlight
    21.05.2024
    Schlüsselrolle von Nickel-Ionen im Simons-Prozess entdeckt
    Forscher*innen der Bundesanstalt für Materialforschung und -prüfung (BAM) und der Freien Universität Berlin haben erstmals den genauen Mechanismus des Simons-Prozesses entschlüsselt. Das interdisziplinäre Forschungsteam nutzte dafür die Synchrotronquelle BESSY II am Helmholtz-Zentrum Berlin.