Katalysatorplattform verbessert das Verständnis von arbeitenden Katalysatoren

© FHI

Eine neuartige Katalysatorplattform, bekannt als Laterally Condensed Catalysts (LCC), wurde entwickelt, um das Design und die Analyse der funktionalen Schnittstelle zu ermöglichen, die die aktive Phase mit ihrer Unterstützung verbindet. Diese Schnittstelle beeinflusst nicht nur die chemischen Eigenschaften der reaktiven Schnittstelle, sondern kontrolliert auch deren Stabilität und damit die Nachhaltigkeit der katalytischen Materialien. Die Entwicklung wurde wesentlich durch die Anwendung von operando-Spektroskopie am Synchrotron BESSY II unterstützt, die es ermöglichte, die dynamischen Prozesse und Strukturen unter Reaktionsbedingungen zu beobachten und zu verstehen.

Unbeschränkte Kombinationen in der Zusammensetzung zwischen aktiver Phase und Unterstützung ermöglichen beispielsweise den direkten Energietransfer zur reaktiven Schnittstelle in der Elektrokatalyse oder elektrischen Heizung. Die physikalische Synthesemethodik im Rahmen des FHI-HZB CatLab-Projekts, die aus der Solarzellentechnologie stammt, ermöglicht den Zugang zu präzisen und homogenen Strukturen und Chemie. Dies erleichtert das mechanistische Verständnis von arbeitenden Katalysatoren und deren anschließende Optimierung durch die Untersuchung reaktiver und funktionaler Schnittstellen mittels Operando-Spektroskopie. Die hier untersuchten Dünnschichtkatalysatoren wurden mit dem Ziel synthetisiert, die Schnittstellenstruktur von Leistungskatalysatoren zu entwerfen und die Materiallücke zwischen Modell- und realen Pulverkatalysatoren zu schließen, während der Einsatz von Edelmetallen minimiert wird. Seine einzigartige flache und dicht gepackte Struktur (LCC) ermöglicht es, eine homogene hohe Dichte an oberflächenaktiven Stellen zu erreichen, wodurch der Gehalt an Material im "Bulk" oder der Unterfläche der aktiven Katalysatoren minimiert wird, was sich positiv auf die Selektivität der katalysierten Reaktion auswirkt.

Diese Bemühungen werden in einer Studie beschrieben, die in Nature Communications veröffentlicht wurde, mit dem Titel "Rationally Designed Laterally-Condensed-Catalysts Deliver Robust Activity and Selectivity for Ethylene Production in Acetylene Hydrogenation." Die Studie ist Teil des CatLab-Projekts, einer Zusammenarbeit, die prominent das Fritz-Haber-Institut der Max-Planck-Gesellschaft (FHI), das Helmholtz-Zentrum Berlin für Materialien und Energie und das Max-Planck-Institut für chemische Energiekonversion umfasst. Das CatLab-Projekt wird vom Bundesministerium für Bildung und Forschung (BMBF) gefördert.

Lesen Sie die ausführliche Mitteilung auf der Webseite des FHI >

FHI

  • Link kopieren

Das könnte Sie auch interessieren

  • Katalysatoraktivierung und -abbau in hydrierten Iridiumoxiden
    Science Highlight
    10.12.2024
    Katalysatoraktivierung und -abbau in hydrierten Iridiumoxiden
    Die Entwicklung effizienter Katalysatoren für die Sauerstoffentwicklung (OER) ist entscheidend für den Fortschritt der Protonenaustauschmembran (PEM)-Wasserelektrolyse, wobei Iridium-basierte OER-Katalysatoren trotz der Herausforderungen im Zusammenhang mit ihrer Auflösung vielversprechend sind. Eine gemeinsame Forschung des Helmholtz-Zentrums Berlin und des Fritz-Haber-Instituts hat Einblicke in die Mechanismen der OER-Leistung und der Iridiumauflösung für amorphe hydrierte Iridiumoxide geliefert und das Verständnis dieses kritischen Prozesses vorangetrieben. Messungen an BESSY II haben dazu wesentliche Erkenntnisse geliefert.
  • Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Science Highlight
    05.12.2024
    Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Für die Produktion von Wasserstoff mit Elektrolyse werden Iridiumbasierte Katalysatoren benötigt. Nun zeigt ein Team am HZB und an der Lichtquelle ALBA, dass die neu entwickelten P2X-Katalysatoren, die mit nur einem Viertel des Iridiums auskommen, ebenso effizient und langzeitstabil sind wie die besten kommerziellen Katalysatoren. Messungen an BESSY II haben nun ans Licht gebracht, wie die besondere chemische Umgebung im P2X-Kat während der Elektrolyse die Wasserspaltung befördert.
  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.