Grüner Wasserstoff: Perowskit-Oxid-Katalysatoren im Röntgenstrahl

Schematische Ansicht der transformierten Schicht (hellgrau) auf dem LaNiO<sub>3</sub> Perowskitfilm (gr&uuml;n), aufgewachsen auf einem Substrat (braun). Rechts ist die vergr&ouml;&szlig;erte Seitenansicht der transformierten Oxyhydroxid-Schicht (mit Spindichte an den Ni-Pl&auml;tzen) aus Simulationen dargestellt.

Schematische Ansicht der transformierten Schicht (hellgrau) auf dem LaNiO3 Perowskitfilm (grün), aufgewachsen auf einem Substrat (braun). Rechts ist die vergrößerte Seitenansicht der transformierten Oxyhydroxid-Schicht (mit Spindichte an den Ni-Plätzen) aus Simulationen dargestellt. © UDE/AG Pentcheva

Für die Herstellung von Grünem Wasserstoff sind Katalysatoren nötig, die den Prozess der Wasserspaltung in Sauerstoff und Wasserstoff steuern. Doch unter Spannung verändert sich die Struktur des Katalysators, was auch die katalytische Aktivität beeinflusst. Ein Forschungsteam aus den Universitäten in Duisburg-Essen und Twente hat u.a. an BESSY II untersucht, wie die Umwandlung von Oberflächen in Perowskit-Oxid-Katalysatoren die Aktivität der Sauerstoffentwicklungsreaktion steuert.

In einem klimaneutralen Energiesystem der Zukunft sorgen vor allem Sonne und Wind für die Bereitstellung von Strom. Ein Teil des „grünen“ Stroms kann für die elektrolytische Aufspaltung von Wasser genutzt werden, um „grünen“ Wasserstoff zu erzeugen. Wasserstoff ist ein effizienter Energiespeicher und ein wertvoller Rohstoff für die Industrie. Bei der Elektrolyse werden Katalysatoren eingesetzt, die die gewünschte Reaktion beschleunigen und den Prozess effizienter machen. Dabei werden für die Wasserstoff-Abscheidung andere Katalysatoren verwendet als für die Sauerstoff-Entwicklung, beide aber sind notwendig.

Perowskit-Oxid-Katalysatoren: preiswert und mit viel Potenzial

Eine interdisziplinäre und internationale Forschergruppe der Universität Essen-Duisburg, der Universität Twente, Forschungszentrum Jülich, sowie HZB hat nun die Klasse von Perowskit-Oxid-Katalysatoren für die Sauerstoff-Entwicklungs-Reaktion eingehend untersucht. Perowskit-Oxid-Katalysatoren sind in den letzten Jahren deutlich weiterentwickelt worden, sie sind preiswert und besitzen das Potenzial für weitere Steigerungen der katalytischen Effizienz. Allerdings zeigen sich binnen kurzer Zeit an den Oberflächen dieser Materialien Veränderungen, die die katalytische Wirkung mindern.

Spektroskopie an BESSY II

Daher hat die Gruppe nun insbesondere die Oberflächenstruktur eingehend untersucht und die experimentellen Daten mit Dichtefunktionalberechnungen abgeglichen. Das Team um den HZB-Forscher Dr. Marcel Risch führte dazu spektroskopische Analysen an der Röntgenquelle BESSY II durch. „Wir konnten feststellen, dass eine bestimmte Oberflächenfacette deutlich aktiver und gleichzeitig stabiler ist als andere. Durch die Röntgenanalyse können wir verstehen, wie man den traditionellen Kompromiss zwischen Aktivität und Stabilität überwinden kann“, sagt Risch. Die Ergebnisse zeigen auch, wie sich bestimmte Oberflächenfacetten umwandeln und wo sich beispielsweise Wasserstoffatome (bzw. Protonen) anlagern.

Diese Einblicke in Umwandlungsprozesse und strukturelle Umwandlungen und chemische Prozesse an den unterschiedlichen Facetten der untersuchten Proben sind wertvoll: Sie tragen dazu bei, gezielt und wissensbasiert Materialien als Elektrokatalysatoren zu designen. Denn Elektrokatalysatoren sind der Schlüssel für sehr viele Anwendungen in der grünen Chemie.

arö


Das könnte Sie auch interessieren

  • Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Science Highlight
    17.07.2024
    Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Die besonderen Eigenschaften von magnetischen Materialien aus der Gruppe der Seltenen Erden gehen auf Elektronen in der 4f-Schale zurück. Bislang galten die magnetischen Eigenschaften der 4f-Elektronen als kaum kontrollierbar. Nun hat ein Team von HZB, der Freien Universität Berlin und weiteren Einrichtungen erstmals gezeigt, dass durch Laserpulse 4f-Elektronen beeinflusst – und damit deren magnetische Eigenschaften verändert werden können. Die Entdeckung, die durch Experimente am EuXFEL und FLASH gelang, weist einen neuen Weg zu Datenspeichern mit Seltenen Erden.
  • BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Science Highlight
    09.07.2024
    BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Feststoffbatterien können mehr Energie speichern und sind sicherer als Batterien mit flüssigen Elektrolyten. Allerdings halten sie nicht so lange und ihre Kapazität nimmt mit jedem Ladezyklus ab. Doch das muss nicht so bleiben: Forscherinnen und Forscher sind den Ursachen bereits auf der Spur. In der Fachzeitschrift ACS Energy Letters stellt ein Team des HZB und der Justus-Liebig-Universität Gießen eine neue Methode vor, um elektrochemische Reaktionen während des Betriebs einer Feststoffbatterie mit Photoelektronenspektroskopie an BESSY II genau zu verfolgen. Die Ergebnisse helfen, Batteriematerialien und -design zu verbessern.

  • HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Nachricht
    09.07.2024
    HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Auf der Suche nach dem perfekten Katalysator bekommt HZB-Forscher Robert Seidel nun Rückenwind – durch einen hochkarätigen ERC Consolidator Grant. In der Titelgeschichte stellen wir vor, warum die Röntgenquelle BESSY II für sein Vorhaben eine wichtige Rolle spielt.